Ferroptosis and Alzheimer's: unveiling new avenues for the treatment and prevention.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Veerta Sharma, Prateek Sharma, Thakur Gurjeet Singh
{"title":"Ferroptosis and Alzheimer's: unveiling new avenues for the treatment and prevention.","authors":"Veerta Sharma, Prateek Sharma, Thakur Gurjeet Singh","doi":"10.1007/s11011-025-01587-w","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), one of the most prevalent neurodegenerative illnesses worldwide, has a devastating effect on individual, families and society. Despite the extensive research and effort, various clinical trials aimed against amyloid-β, which is suspected to have a causative role in the illness, have not yet shown any clinically significant success to date. Emerging evidence suggests that ferroptosis, a kind of programmed cell death triggered by lipid peroxidation and dependent on iron, plays a role in AD. There is a complex relationship between AD and ferroptosis. In both the processes iron dysregulation, altered anti-oxidant mechanisms and lipid peroxidation is involved. Ferroptotic processes contributes to the neuro-inflammation, oxidative stress and damage to the neurons as observed in AD. Additionally, amyloid-β, a hallmark of AD, may influence the ferroptosis, further linked the two pathways. Numerous signalling pathways such as Phospho inositide 3-kinase, Glycogen synthase kinase-3β, 5'-AMP-activated protein kinase, nuclear factor erythroid 2-related factor-2 and Sirtuin pathway plays a part in the pathophysiology of AD. Through a comprehensive review of current research and experimentation, this investigation elucidates the interactions between novel pharmacological agents (ferroptotic inhibitors) and AD-related pathways. Furthermore, this review highlights the various ferroptotic inhibitors as the therapeutic agents for the slowing down the progression of AD. The crosstalk between these processes could unveil the potential therapeutic targets for the AD treatment.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 4","pages":"167"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01587-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD), one of the most prevalent neurodegenerative illnesses worldwide, has a devastating effect on individual, families and society. Despite the extensive research and effort, various clinical trials aimed against amyloid-β, which is suspected to have a causative role in the illness, have not yet shown any clinically significant success to date. Emerging evidence suggests that ferroptosis, a kind of programmed cell death triggered by lipid peroxidation and dependent on iron, plays a role in AD. There is a complex relationship between AD and ferroptosis. In both the processes iron dysregulation, altered anti-oxidant mechanisms and lipid peroxidation is involved. Ferroptotic processes contributes to the neuro-inflammation, oxidative stress and damage to the neurons as observed in AD. Additionally, amyloid-β, a hallmark of AD, may influence the ferroptosis, further linked the two pathways. Numerous signalling pathways such as Phospho inositide 3-kinase, Glycogen synthase kinase-3β, 5'-AMP-activated protein kinase, nuclear factor erythroid 2-related factor-2 and Sirtuin pathway plays a part in the pathophysiology of AD. Through a comprehensive review of current research and experimentation, this investigation elucidates the interactions between novel pharmacological agents (ferroptotic inhibitors) and AD-related pathways. Furthermore, this review highlights the various ferroptotic inhibitors as the therapeutic agents for the slowing down the progression of AD. The crosstalk between these processes could unveil the potential therapeutic targets for the AD treatment.

铁蛋白沉积与阿尔茨海默氏症:揭示治疗和预防的新途径。
阿尔茨海默病(AD)是世界上最常见的神经退行性疾病之一,对个人、家庭和社会都有毁灭性的影响。尽管进行了广泛的研究和努力,但各种针对淀粉样蛋白-β的临床试验迄今尚未显示出任何临床显著的成功。淀粉样蛋白-β被怀疑是该疾病的致病因素。越来越多的证据表明,铁凋亡是一种由脂质过氧化引起的程序性细胞死亡,依赖于铁,在AD中起作用。AD与铁下垂之间存在复杂的关系。这两个过程都涉及铁的失调、抗氧化机制的改变和脂质过氧化。在阿尔茨海默病中观察到,铁致过程有助于神经炎症、氧化应激和神经元损伤。此外,淀粉样蛋白β (AD的标志)可能影响铁下垂,进一步将两种途径联系起来。磷酸肌肽3-激酶、糖原合成酶激酶-3β、5′- amp活化蛋白激酶、核因子红系2相关因子-2、Sirtuin等多种信号通路参与AD的病理生理过程。通过对当前研究和实验的全面回顾,本研究阐明了新型药物(铁抑制剂)与ad相关途径之间的相互作用。此外,本综述还重点介绍了各种降铁抑制剂作为减缓AD进展的治疗药物。这些过程之间的相互作用可以揭示AD治疗的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信