Enhancing remyelination in multiple sclerosis via M1 muscarinic acetylcholine receptor.

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Keren Chen, Eunyoung Park, Khaled S Abd-Elrahman
{"title":"Enhancing remyelination in multiple sclerosis via M1 muscarinic acetylcholine receptor.","authors":"Keren Chen, Eunyoung Park, Khaled S Abd-Elrahman","doi":"10.1016/j.molpha.2025.100027","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is growing in prevalence; yet, treatments that can reverse the progression of the disease are still needed. One strategy that has shown promise for reversing MS is remyelination by inhibiting the M1 receptor, a member of the muscarinic acetylcholine receptor (mAChR) family. Antagonizing the M1 mAChR is believed to be the mechanism by which clemastine, a developing drug that has been observed to enhance myelination in animal studies and phase II clinical trials, elicits its myelination-promoting effects. Recent studies have indicated that blocking M1 mAChR may promote oligodendrocyte differentiation via the extracellular signal-regulated kinase pathway, modulating Ca<sup>2+</sup> concentration oscillations, and cross-talking with N-methyl-d-aspartate and Notch-1 receptors. However, clemastine has recently been found to accelerate disability in patients with MS, discouraging further progress in its clinical trials. Nevertheless, the underlying mechanisms following M1 mAChR antagonism by clemastine may still be targeted using alternative antimuscarinic drugs. This review consolidates recent advancements in our understanding of the mechanisms by which antagonizing M1 mAChR promotes remyelination and summarizes alternative antimuscarinic drugs that could be leveraged to treat MS in the future. SIGNIFICANCE STATEMENT: Current treatments for multiple sclerosis are limited to disease management, and there is a need for restorative treatments that can reverse progressive forms of the disease. This review aims to summarize the potential mechanisms by which antagonizing the M1 muscarinic acetylcholine receptor could promote remyelination and elaborate on a collection of promising antimuscarinic drugs, consolidating the knowledge needed to target these mechanisms and develop therapeutics that could reverse the progress of demyelinating diseases like multiple sclerosis.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"107 4","pages":"100027"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molpha.2025.100027","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is growing in prevalence; yet, treatments that can reverse the progression of the disease are still needed. One strategy that has shown promise for reversing MS is remyelination by inhibiting the M1 receptor, a member of the muscarinic acetylcholine receptor (mAChR) family. Antagonizing the M1 mAChR is believed to be the mechanism by which clemastine, a developing drug that has been observed to enhance myelination in animal studies and phase II clinical trials, elicits its myelination-promoting effects. Recent studies have indicated that blocking M1 mAChR may promote oligodendrocyte differentiation via the extracellular signal-regulated kinase pathway, modulating Ca2+ concentration oscillations, and cross-talking with N-methyl-d-aspartate and Notch-1 receptors. However, clemastine has recently been found to accelerate disability in patients with MS, discouraging further progress in its clinical trials. Nevertheless, the underlying mechanisms following M1 mAChR antagonism by clemastine may still be targeted using alternative antimuscarinic drugs. This review consolidates recent advancements in our understanding of the mechanisms by which antagonizing M1 mAChR promotes remyelination and summarizes alternative antimuscarinic drugs that could be leveraged to treat MS in the future. SIGNIFICANCE STATEMENT: Current treatments for multiple sclerosis are limited to disease management, and there is a need for restorative treatments that can reverse progressive forms of the disease. This review aims to summarize the potential mechanisms by which antagonizing the M1 muscarinic acetylcholine receptor could promote remyelination and elaborate on a collection of promising antimuscarinic drugs, consolidating the knowledge needed to target these mechanisms and develop therapeutics that could reverse the progress of demyelinating diseases like multiple sclerosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信