Alberte Silke Buch-Rasmussen, Helle Andersen, Christina Stage, Ann Maria Kruse Hansen, Sarah J Paulsen, Matthew Paul Gillum, Birgitte Andersen, Anna Secher, Markus Latta, Christoffer Clemmensen, Sebastian Beck Jørgensen
{"title":"Deletion of GFRAL blunts weight lowering effects of FGF21 in female mice.","authors":"Alberte Silke Buch-Rasmussen, Helle Andersen, Christina Stage, Ann Maria Kruse Hansen, Sarah J Paulsen, Matthew Paul Gillum, Birgitte Andersen, Anna Secher, Markus Latta, Christoffer Clemmensen, Sebastian Beck Jørgensen","doi":"10.1530/JOE-25-0017","DOIUrl":null,"url":null,"abstract":"<p><p>The role of the GDF15 receptor, GDNF family receptor alpha-like (GFRAL), in the metabolic effects of FGF21 was investigated by treating female GFRAL knockout mice with recombinant human FGF21. In contrast to FGF21-treated wild-type mice, which lost 12% body weight relative to the vehicle, the absence of GFRAL coincided with a greater compensatory increase in food intake, and accordingly, the weight-lowering effect of FGF21 treatment was blunted. Interestingly, the glycemic benefits of FGF21 persisted in the absence of GFRAL. Potential crosstalk between FGF21 and GDF15 was further investigated acutely in obese male rats, in which a single dose of FGF21 did not increase endogenous circulating GDF15 levels and vice versa. Finally, overexpression of GDF15 or FGF21 with hydrodynamic gene delivery in obese male mice did not alter the expression of the other's receptor complex in regions of the hypothalamus and hindbrain. Collectively, we demonstrate an impaired weight-lowering effect of exogenous FGF21 in female GFRAL, knockout mice. Yet, further examination of the interconnectedness between the GDF15 and FGF21 endocrine axes in male rodents implies that they largely operate in parallel and are not extensively intertwined. In future studies, it will be important to investigate the influence of sex, particularly on the role of GDF15-GFRAL signaling in regulating compensatory food intake induced by FGF21 pharmacology.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-25-0017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The role of the GDF15 receptor, GDNF family receptor alpha-like (GFRAL), in the metabolic effects of FGF21 was investigated by treating female GFRAL knockout mice with recombinant human FGF21. In contrast to FGF21-treated wild-type mice, which lost 12% body weight relative to the vehicle, the absence of GFRAL coincided with a greater compensatory increase in food intake, and accordingly, the weight-lowering effect of FGF21 treatment was blunted. Interestingly, the glycemic benefits of FGF21 persisted in the absence of GFRAL. Potential crosstalk between FGF21 and GDF15 was further investigated acutely in obese male rats, in which a single dose of FGF21 did not increase endogenous circulating GDF15 levels and vice versa. Finally, overexpression of GDF15 or FGF21 with hydrodynamic gene delivery in obese male mice did not alter the expression of the other's receptor complex in regions of the hypothalamus and hindbrain. Collectively, we demonstrate an impaired weight-lowering effect of exogenous FGF21 in female GFRAL, knockout mice. Yet, further examination of the interconnectedness between the GDF15 and FGF21 endocrine axes in male rodents implies that they largely operate in parallel and are not extensively intertwined. In future studies, it will be important to investigate the influence of sex, particularly on the role of GDF15-GFRAL signaling in regulating compensatory food intake induced by FGF21 pharmacology.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.