The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors.

IF 4.1 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yixin Wang, Zongtao Hu, Hongzhi Wang
{"title":"The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors.","authors":"Yixin Wang, Zongtao Hu, Hongzhi Wang","doi":"10.1186/s13244-025-01950-6","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics has widespread applications in the field of brain tumor research. However, radiomic analyses often function as a 'black box' due to their use of complex algorithms, which hinders the translation of brain tumor radiomics into clinical applications. In this review, we will elaborate extensively on the application of radiomics in brain tumors. Additionally, we will address the interpretability of handcrafted-feature radiomics and deep learning-based radiomics by integrating biological domain knowledge of brain tumors with interpretability methods. Furthermore, we will discuss the current challenges and prospects concerning the interpretability of brain tumor radiomics. Enhancing the interpretability of radiomics may make it more understandable for physicians, ultimately facilitating its translation into clinical practice. CRITICAL RELEVANCE STATEMENT: The interpretability of brain tumor radiomics empowers neuro-oncologists to make well-informed decisions from radiomic models. KEY POINTS: Radiomics makes a significant impact on the management of brain tumors in several key clinical areas. Transparent models, habitat analysis, and feature attribute explanations can enhance the interpretability of traditional handcrafted-feature radiomics in brain tumors. Various interpretability methods have been applied to explain deep learning-based models; however, there is a lack of biological mechanisms underlying these models.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"77"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01950-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Radiomics has widespread applications in the field of brain tumor research. However, radiomic analyses often function as a 'black box' due to their use of complex algorithms, which hinders the translation of brain tumor radiomics into clinical applications. In this review, we will elaborate extensively on the application of radiomics in brain tumors. Additionally, we will address the interpretability of handcrafted-feature radiomics and deep learning-based radiomics by integrating biological domain knowledge of brain tumors with interpretability methods. Furthermore, we will discuss the current challenges and prospects concerning the interpretability of brain tumor radiomics. Enhancing the interpretability of radiomics may make it more understandable for physicians, ultimately facilitating its translation into clinical practice. CRITICAL RELEVANCE STATEMENT: The interpretability of brain tumor radiomics empowers neuro-oncologists to make well-informed decisions from radiomic models. KEY POINTS: Radiomics makes a significant impact on the management of brain tumors in several key clinical areas. Transparent models, habitat analysis, and feature attribute explanations can enhance the interpretability of traditional handcrafted-feature radiomics in brain tumors. Various interpretability methods have been applied to explain deep learning-based models; however, there is a lack of biological mechanisms underlying these models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Insights into Imaging
Insights into Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
7.30
自引率
4.30%
发文量
182
审稿时长
13 weeks
期刊介绍: Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere! I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe. Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy. A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field. I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly. The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members. The journal went open access in 2012, which means that all articles published since then are freely available online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信