{"title":"The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors.","authors":"Yixin Wang, Zongtao Hu, Hongzhi Wang","doi":"10.1186/s13244-025-01950-6","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics has widespread applications in the field of brain tumor research. However, radiomic analyses often function as a 'black box' due to their use of complex algorithms, which hinders the translation of brain tumor radiomics into clinical applications. In this review, we will elaborate extensively on the application of radiomics in brain tumors. Additionally, we will address the interpretability of handcrafted-feature radiomics and deep learning-based radiomics by integrating biological domain knowledge of brain tumors with interpretability methods. Furthermore, we will discuss the current challenges and prospects concerning the interpretability of brain tumor radiomics. Enhancing the interpretability of radiomics may make it more understandable for physicians, ultimately facilitating its translation into clinical practice. CRITICAL RELEVANCE STATEMENT: The interpretability of brain tumor radiomics empowers neuro-oncologists to make well-informed decisions from radiomic models. KEY POINTS: Radiomics makes a significant impact on the management of brain tumors in several key clinical areas. Transparent models, habitat analysis, and feature attribute explanations can enhance the interpretability of traditional handcrafted-feature radiomics in brain tumors. Various interpretability methods have been applied to explain deep learning-based models; however, there is a lack of biological mechanisms underlying these models.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"77"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01950-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Radiomics has widespread applications in the field of brain tumor research. However, radiomic analyses often function as a 'black box' due to their use of complex algorithms, which hinders the translation of brain tumor radiomics into clinical applications. In this review, we will elaborate extensively on the application of radiomics in brain tumors. Additionally, we will address the interpretability of handcrafted-feature radiomics and deep learning-based radiomics by integrating biological domain knowledge of brain tumors with interpretability methods. Furthermore, we will discuss the current challenges and prospects concerning the interpretability of brain tumor radiomics. Enhancing the interpretability of radiomics may make it more understandable for physicians, ultimately facilitating its translation into clinical practice. CRITICAL RELEVANCE STATEMENT: The interpretability of brain tumor radiomics empowers neuro-oncologists to make well-informed decisions from radiomic models. KEY POINTS: Radiomics makes a significant impact on the management of brain tumors in several key clinical areas. Transparent models, habitat analysis, and feature attribute explanations can enhance the interpretability of traditional handcrafted-feature radiomics in brain tumors. Various interpretability methods have been applied to explain deep learning-based models; however, there is a lack of biological mechanisms underlying these models.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.