The potential role and mechanism of Rhizoma Coptidis in prevention of diabetic encephalopathy: targeting sodium ion and channels.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Frontiers in Pharmacology Pub Date : 2025-03-14 eCollection Date: 2025-01-01 DOI:10.3389/fphar.2025.1542015
Ning Cao, Zhangxuan Shou, Mimi Wang, You Wu, Xuefeng Wang
{"title":"The potential role and mechanism of Rhizoma Coptidis in prevention of diabetic encephalopathy: targeting sodium ion and channels.","authors":"Ning Cao, Zhangxuan Shou, Mimi Wang, You Wu, Xuefeng Wang","doi":"10.3389/fphar.2025.1542015","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Rhizoma Coptidis (RC) is an edible and medicinal herb with anti-hyperglycemia, which has potential application in the prevention of diabetic encephalopathy (DE). However, its efficacy and underlying mechanism in DE prevention have not been elucidated yet. The objective of the current study is to investigate the preventive effect of RC on DE, thereby focusing on the target through the method of network pharmacology and molecular docking.</p><p><strong>Methods: </strong>Sixty 4-week-old, male C57BL/6 mice were randomly allocated to six groups: control, model, metformin (200 mg/kg), RCL (0.75 g/kg), RCM (1.5 g/kg), and RCH (3 g/kg). The DE-model mice were induced by streptozocin combined with a high-fat diet. In addition, the neuroprotective effect of RC was determined both <i>in vivo</i> and <i>in vitro</i>. Network pharmacology analysis was used to screen the potential mechanism of RC. Thereafter, the underlying mechanism of action of RC was explored by molecular docking prediction and Western blot analysis. An analysis of patients with DE was performed to validate it from another perspective.</p><p><strong>Results: </strong>The results showed that the cognitive state of DE model mice was improved and neuronal injury was ameliorated after RC administration. Active compounds in RC, berberine and coptisine, were found to ameliorate HT22 injury induced by high glucose. Network pharmacology results suggest that voltage-gated sodium channel subtypes (Nav1.1, Nav1.2, and Nav1.6) may be the targets for RC prevention of DE. Furthermore, the Western blot analysis revealed that RC significantly upregulated Nav1.1 and Nav1.2, while Nav1.6 could not. In addition, serum sodium was related to the cognitive status of DE patients, which can be used as a diagnostic index for mild and moderate-severe DE.</p><p><strong>Discussion: </strong>RC has the potential to be a functional food or adjuvant drug for DE prevention, and Nav1.1 and Nav1.2 are promising DE intervention targets.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"16 ","pages":"1542015"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2025.1542015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Rhizoma Coptidis (RC) is an edible and medicinal herb with anti-hyperglycemia, which has potential application in the prevention of diabetic encephalopathy (DE). However, its efficacy and underlying mechanism in DE prevention have not been elucidated yet. The objective of the current study is to investigate the preventive effect of RC on DE, thereby focusing on the target through the method of network pharmacology and molecular docking.

Methods: Sixty 4-week-old, male C57BL/6 mice were randomly allocated to six groups: control, model, metformin (200 mg/kg), RCL (0.75 g/kg), RCM (1.5 g/kg), and RCH (3 g/kg). The DE-model mice were induced by streptozocin combined with a high-fat diet. In addition, the neuroprotective effect of RC was determined both in vivo and in vitro. Network pharmacology analysis was used to screen the potential mechanism of RC. Thereafter, the underlying mechanism of action of RC was explored by molecular docking prediction and Western blot analysis. An analysis of patients with DE was performed to validate it from another perspective.

Results: The results showed that the cognitive state of DE model mice was improved and neuronal injury was ameliorated after RC administration. Active compounds in RC, berberine and coptisine, were found to ameliorate HT22 injury induced by high glucose. Network pharmacology results suggest that voltage-gated sodium channel subtypes (Nav1.1, Nav1.2, and Nav1.6) may be the targets for RC prevention of DE. Furthermore, the Western blot analysis revealed that RC significantly upregulated Nav1.1 and Nav1.2, while Nav1.6 could not. In addition, serum sodium was related to the cognitive status of DE patients, which can be used as a diagnostic index for mild and moderate-severe DE.

Discussion: RC has the potential to be a functional food or adjuvant drug for DE prevention, and Nav1.1 and Nav1.2 are promising DE intervention targets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信