Xianlin Li, Xiunan Yue, Lan Zhang, Xiaojun Zheng, Nan Shang
{"title":"Pharmacist-led surgical medicines prescription optimization and prediction service improves patient outcomes - a machine learning based study.","authors":"Xianlin Li, Xiunan Yue, Lan Zhang, Xiaojun Zheng, Nan Shang","doi":"10.3389/fphar.2025.1534552","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Optimizing prescription practices for surgical patients is crucial due to the complexity and sensitivity of their medication regimens. To enhance medication safety and improve patient outcomes by introducing a machine learning (ML)-based warning model integrated into a pharmacist-led Surgical Medicines Prescription Optimization and Prediction (SMPOP) service.</p><p><strong>Method: </strong>A retrospective cohort design with a prospective implementation phase was used in a tertiary hospital. The study was divided into three phases: (1) Data analysis and ML model development (1 April 2019 to 31 March 2022), (2) Establishment of a pharmacist-led management model (1 April 2022 to 31 March 2023), and (3) Outcome evaluation (1 April 2023 to 31 March 2024). Key variables, including gender, age, number of comorbidities, type of surgery, surgery complexity, days from hospitalization to surgery, type of prescription, type of medication, route of administration, and prescriber's seniority were collected. The data set was divided into training set and test set in the form of 8:2. The effectiveness of the SMPOP service was evaluated based on prescription appropriateness, adverse drug reactions (ADRs), length of hospital stay, total hospitalization costs, and medication expenses.</p><p><strong>Results: </strong>In Phase 1, 6,983 prescriptions were identified as potential prescription errors (PPEs) for ML model development, with 43.9% of them accepted by prescribers. The Random Forest (RF) model performed the best (AUC = 0.893) and retained high accuracy with 12 features (AUC = 0.886). External validation showed an AUC of 0.786. In Phase 2, SMPOP services were implemented, which effectively promoted effective communication between pharmacists and physicians and ensured the successful implementation of intervention measures. The SMPOP service was fully implemented. In Phase 3, the acceptance rate of pharmacist recommendations rose to 71.3%, while the length of stay, total hospitalization costs, and medication costs significantly decreased (<i>p</i> < 0.05), indicating overall improvement compared to Phase 1.</p><p><strong>Conclusion: </strong>SMPOP service enhances prescription appropriateness, reduces ADRs, shortens stays, and lowers costs, underscoring the need for continuous innovation in healthcare.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"16 ","pages":"1534552"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2025.1534552","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Optimizing prescription practices for surgical patients is crucial due to the complexity and sensitivity of their medication regimens. To enhance medication safety and improve patient outcomes by introducing a machine learning (ML)-based warning model integrated into a pharmacist-led Surgical Medicines Prescription Optimization and Prediction (SMPOP) service.
Method: A retrospective cohort design with a prospective implementation phase was used in a tertiary hospital. The study was divided into three phases: (1) Data analysis and ML model development (1 April 2019 to 31 March 2022), (2) Establishment of a pharmacist-led management model (1 April 2022 to 31 March 2023), and (3) Outcome evaluation (1 April 2023 to 31 March 2024). Key variables, including gender, age, number of comorbidities, type of surgery, surgery complexity, days from hospitalization to surgery, type of prescription, type of medication, route of administration, and prescriber's seniority were collected. The data set was divided into training set and test set in the form of 8:2. The effectiveness of the SMPOP service was evaluated based on prescription appropriateness, adverse drug reactions (ADRs), length of hospital stay, total hospitalization costs, and medication expenses.
Results: In Phase 1, 6,983 prescriptions were identified as potential prescription errors (PPEs) for ML model development, with 43.9% of them accepted by prescribers. The Random Forest (RF) model performed the best (AUC = 0.893) and retained high accuracy with 12 features (AUC = 0.886). External validation showed an AUC of 0.786. In Phase 2, SMPOP services were implemented, which effectively promoted effective communication between pharmacists and physicians and ensured the successful implementation of intervention measures. The SMPOP service was fully implemented. In Phase 3, the acceptance rate of pharmacist recommendations rose to 71.3%, while the length of stay, total hospitalization costs, and medication costs significantly decreased (p < 0.05), indicating overall improvement compared to Phase 1.
Conclusion: SMPOP service enhances prescription appropriateness, reduces ADRs, shortens stays, and lowers costs, underscoring the need for continuous innovation in healthcare.
期刊介绍:
Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.