A digital twin of the Biograph Vision Quadra long axial field of view PET/CT: Monte Carlo simulation and image reconstruction framework.

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Christian M Pommranz, Ezzat A Elmoujarkach, Wenhong Lan, Jorge Cabello, Pia M Linder, Hong Phuc Vo, Julia G Mannheim, Andrea Santangelo, Maurizio Conti, Christian la Fougère, Magdalena Rafecas, Fabian P Schmidt
{"title":"A digital twin of the Biograph Vision Quadra long axial field of view PET/CT: Monte Carlo simulation and image reconstruction framework.","authors":"Christian M Pommranz, Ezzat A Elmoujarkach, Wenhong Lan, Jorge Cabello, Pia M Linder, Hong Phuc Vo, Julia G Mannheim, Andrea Santangelo, Maurizio Conti, Christian la Fougère, Magdalena Rafecas, Fabian P Schmidt","doi":"10.1186/s40658-025-00738-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The high sensitivity and axial coverage of large axial field of view (LAFOV) PET scanners have an unmet potential for total-body PET research. Despite these technological advances, inherent challenges to PET scans such as patient motion persist. To provide simulation-derived ground truth information, we developed a digital replica of the Biograph Vision Quadra LAFOV PET/CT scanner closely mimicking real event processing and image reconstruction.</p><p><strong>Material and methods: </strong>The framework uses a GATE model in combination with vendor-specific software prototypes for event processing and image reconstruction (e7 tools, Siemens Healthineers). The framework was validated against experimental measurements following the NEMA NU-2 2018 standard. In addition, patient-like simulations were performed with the XCAT phantom, including respiratory motion and modeled lesions of 5, 10, 20 mm size, to assess the impact of motion artefacts on PET images using a motion-free reference.</p><p><strong>Results: </strong>The simulation framework demonstrated high accuracy in replicating scanner performance in terms of image quality, contrast recovery (37 mm sphere: 86.5% and 85.5%; 28 mm: 82.6% and 82.4%; 22 mm: 78.8% and 77.7%; 17 mm: 74.9% and 74.6%; 13 mm: 67.0% and 67.9%; 10 mm: 55.5% and 64.3%), image noise (CV of 7.5% and 7.7%) and sensitivity (174.6 cps/kBq and 175.3 cps/kBq) for the simulation and experimental data, respectively. High agreement was found for the spatial resolution with a difference of 0.4 ± 0.3 mm and the NECR aligned well with a maximum deviation of 9%, particularly in the clinical activity range below 10 kBq/mL. Motion induced artefacts resulted in a quantification error at lesion level between - 12.3% and - 45.1%.</p><p><strong>Conclusion: </strong>The experimentally validated digital twin of the Biograph Vision Quadra facilitates detailed studies of realistic patient scenarios while offering unprecedented opportunities for motion correction, dosimetry, AI training, and imaging protocol optimization.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"31"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00738-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The high sensitivity and axial coverage of large axial field of view (LAFOV) PET scanners have an unmet potential for total-body PET research. Despite these technological advances, inherent challenges to PET scans such as patient motion persist. To provide simulation-derived ground truth information, we developed a digital replica of the Biograph Vision Quadra LAFOV PET/CT scanner closely mimicking real event processing and image reconstruction.

Material and methods: The framework uses a GATE model in combination with vendor-specific software prototypes for event processing and image reconstruction (e7 tools, Siemens Healthineers). The framework was validated against experimental measurements following the NEMA NU-2 2018 standard. In addition, patient-like simulations were performed with the XCAT phantom, including respiratory motion and modeled lesions of 5, 10, 20 mm size, to assess the impact of motion artefacts on PET images using a motion-free reference.

Results: The simulation framework demonstrated high accuracy in replicating scanner performance in terms of image quality, contrast recovery (37 mm sphere: 86.5% and 85.5%; 28 mm: 82.6% and 82.4%; 22 mm: 78.8% and 77.7%; 17 mm: 74.9% and 74.6%; 13 mm: 67.0% and 67.9%; 10 mm: 55.5% and 64.3%), image noise (CV of 7.5% and 7.7%) and sensitivity (174.6 cps/kBq and 175.3 cps/kBq) for the simulation and experimental data, respectively. High agreement was found for the spatial resolution with a difference of 0.4 ± 0.3 mm and the NECR aligned well with a maximum deviation of 9%, particularly in the clinical activity range below 10 kBq/mL. Motion induced artefacts resulted in a quantification error at lesion level between - 12.3% and - 45.1%.

Conclusion: The experimentally validated digital twin of the Biograph Vision Quadra facilitates detailed studies of realistic patient scenarios while offering unprecedented opportunities for motion correction, dosimetry, AI training, and imaging protocol optimization.

Biograph Vision Quadra长轴向PET/CT视场的数字孪生:蒙特卡罗模拟和图像重建框架。
背景:大轴向视场(LAFOV) PET扫描仪具有高灵敏度和轴向覆盖能力,在全身PET研究中具有未被满足的潜力。尽管这些技术进步,PET扫描固有的挑战,如病人的运动仍然存在。为了提供仿真衍生的地面真实信息,我们开发了Biograph Vision Quadra LAFOV PET/CT扫描仪的数字复制品,密切模仿真实事件处理和图像重建。材料和方法:该框架使用GATE模型与供应商特定的软件原型相结合,用于事件处理和图像重建(e7工具,Siemens Healthineers)。该框架根据NEMA NU-2 2018标准的实验测量进行了验证。此外,使用XCAT模型进行患者模拟,包括呼吸运动和5、10、20 mm大小的模型病变,以评估运动伪影对PET图像的影响。结果:该模拟框架在图像质量、对比度恢复(37 mm球面:86.5%和85.5%)方面具有较高的复制扫描仪性能的准确性;28毫米:82.6%和82.4%;22 mm: 78.8%和77.7%;17毫米:74.9%和74.6%;13 mm: 67.0%和67.9%;10 mm: 55.5%和64.3%),图像噪声(CV分别为7.5%和7.7%)和灵敏度(174.6 cps/kBq和175.3 cps/kBq)。空间分辨率的一致性很高,相差0.4±0.3 mm, NECR排列良好,最大偏差为9%,特别是在临床活性低于10 kBq/mL的范围内。运动引起的伪影导致病灶水平的量化误差在- 12.3%至- 45.1%之间。结论:经过实验验证的Biograph Vision Quadra数字孪生体促进了对现实患者场景的详细研究,同时为运动矫正、剂量学、人工智能训练和成像方案优化提供了前所未有的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信