Inferring kernel ϵ-machines: Discovering structure in complex systems.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0242981
Alexandra M Jurgens, Nicolas Brodu
{"title":"Inferring kernel ϵ-machines: Discovering structure in complex systems.","authors":"Alexandra M Jurgens, Nicolas Brodu","doi":"10.1063/5.0242981","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, we showed that computational mechanic's causal states-predictively equivalent trajectory classes for a stochastic dynamical system-can be cast into a reproducing kernel Hilbert space. The result is a widely applicable method that infers causal structure directly from very different kinds of observations and systems. Here, we expand this method to explicitly introduce the causal diffusion components it produces. These encode the kernel causal state estimates as a set of coordinates in a reduced dimension space. We show how each component extracts predictive features from data and demonstrate their application on four examples: first, a simple pendulum-an exactly solvable system; second, a molecular-dynamic trajectory of n-butane-a high-dimensional system with a well-studied energy landscape; third, the monthly sunspot sequence-the longest-running available time series of direct observations; and fourth, multi-year observations of an active crop field-a set of heterogeneous observations of the same ecosystem taken for over a decade. In this way, we demonstrate that the empirical kernel causal state algorithm robustly discovers predictive structures for systems with widely varying dimensionality and stochasticity.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0242981","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Previously, we showed that computational mechanic's causal states-predictively equivalent trajectory classes for a stochastic dynamical system-can be cast into a reproducing kernel Hilbert space. The result is a widely applicable method that infers causal structure directly from very different kinds of observations and systems. Here, we expand this method to explicitly introduce the causal diffusion components it produces. These encode the kernel causal state estimates as a set of coordinates in a reduced dimension space. We show how each component extracts predictive features from data and demonstrate their application on four examples: first, a simple pendulum-an exactly solvable system; second, a molecular-dynamic trajectory of n-butane-a high-dimensional system with a well-studied energy landscape; third, the monthly sunspot sequence-the longest-running available time series of direct observations; and fourth, multi-year observations of an active crop field-a set of heterogeneous observations of the same ecosystem taken for over a decade. In this way, we demonstrate that the empirical kernel causal state algorithm robustly discovers predictive structures for systems with widely varying dimensionality and stochasticity.

推断核ϵ-machines:发现复杂系统中的结构。
之前,我们证明了计算力学的因果状态——随机动力系统的预测等效轨迹类——可以被投射到一个再现核希尔伯特空间中。结果是一种广泛适用的方法,可以直接从非常不同的观察和系统中推断出因果结构。在这里,我们扩展了这种方法,明确地引入了它产生的因果扩散成分。它们将核因果状态估计编码为降维空间中的一组坐标。我们展示了每个组件如何从数据中提取预测特征,并在四个示例中演示了它们的应用:首先,一个简单的钟摆-一个精确可解的系统;其次,正丁烷的分子动力学轨迹——一个高维系统,其能量景观得到了充分的研究;第三,每月的太阳黑子序列——这是直接观测时间最长的序列;第四,对一片活跃的农田进行了多年的观察——对同一生态系统进行了十多年的不同种类的观察。通过这种方式,我们证明了经验核因果状态算法可以鲁棒地发现具有广泛变化维数和随机性的系统的预测结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信