Tomasz Pienkowski, Katarzyna Wawrzak-Pienkowska, Anna Tankiewicz-Kwedlo, Michal Ciborowski, Krzysztof Kurek, Dariusz Pawlak
{"title":"Leveraging glycosylation for early detection and therapeutic target discovery in pancreatic cancer.","authors":"Tomasz Pienkowski, Katarzyna Wawrzak-Pienkowska, Anna Tankiewicz-Kwedlo, Michal Ciborowski, Krzysztof Kurek, Dariusz Pawlak","doi":"10.1038/s41419-025-07517-z","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to late-stage diagnosis, limited biomarker specificity, and aggressive metastatic potential. Recent glycoproteomic studies have illuminated the crucial role of glycosylation in PC progression, revealing altered glycosylation patterns that impact cell adhesion, immune evasion, and tumor invasiveness. Biomarkers such as CA19-9 remain the clinical standard, yet limitations in sensitivity and specificity, especially in early disease stages, necessitate the exploration of alternative markers. Emerging glycoproteins-such as mesothelin, thrombospondin-2, and glycan modifications like sialyl-Lewis x-offer diagnostic promise when combined with CA19-9 or used in profiling panels. Furthermore, therapeutic strategies targeting glycosylation processes, including sialylation, and fucosylation, have shown potential in curbing PC metastasis and enhancing immune response. Translational platforms, such as patient-derived xenografts and advanced in vitro models, are pivotal in validating these findings and assessing glycosylation potential therapeutic impact. Continued exploration of glycosylation-driven mechanisms and biomarker discovery in PC can significantly advance early detection and treatment efficacy, offering new hope in the management of this challenging disease.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"227"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07517-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to late-stage diagnosis, limited biomarker specificity, and aggressive metastatic potential. Recent glycoproteomic studies have illuminated the crucial role of glycosylation in PC progression, revealing altered glycosylation patterns that impact cell adhesion, immune evasion, and tumor invasiveness. Biomarkers such as CA19-9 remain the clinical standard, yet limitations in sensitivity and specificity, especially in early disease stages, necessitate the exploration of alternative markers. Emerging glycoproteins-such as mesothelin, thrombospondin-2, and glycan modifications like sialyl-Lewis x-offer diagnostic promise when combined with CA19-9 or used in profiling panels. Furthermore, therapeutic strategies targeting glycosylation processes, including sialylation, and fucosylation, have shown potential in curbing PC metastasis and enhancing immune response. Translational platforms, such as patient-derived xenografts and advanced in vitro models, are pivotal in validating these findings and assessing glycosylation potential therapeutic impact. Continued exploration of glycosylation-driven mechanisms and biomarker discovery in PC can significantly advance early detection and treatment efficacy, offering new hope in the management of this challenging disease.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism