{"title":"Kolmogorov-Arnold networks for genomic tasks.","authors":"Oleksandr Cherednichenko, Maria Poptsova","doi":"10.1093/bib/bbaf129","DOIUrl":null,"url":null,"abstract":"<p><p>Kolmogorov-Arnold networks (KANs) emerged as a promising alternative for multilayer perceptrons (MLPs) in dense fully connected networks. Multiple attempts have been made to integrate KANs into various deep learning architectures in the domains of computer vision and natural language processing. Integrating KANs into deep learning models for genomic tasks has not been explored. Here, we tested linear KANs (LKANs) and convolutional KANs (CKANs) as a replacement for MLP in baseline deep learning architectures for classification and generation of genomic sequences. We used three genomic benchmark datasets: Genomic Benchmarks, Genome Understanding Evaluation, and Flipon Benchmark. We demonstrated that LKANs outperformed both baseline and CKANs on almost all datasets. CKANs can achieve comparable results but struggle with scaling over large number of parameters. Ablation analysis demonstrated that the number of KAN layers correlates with the model performance. Overall, linear KANs show promising results in improving the performance of deep learning models with relatively small number of parameters. Unleashing KAN potential in different state-of-the-art deep learning architectures currently used in genomics requires further research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf129","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Kolmogorov-Arnold networks (KANs) emerged as a promising alternative for multilayer perceptrons (MLPs) in dense fully connected networks. Multiple attempts have been made to integrate KANs into various deep learning architectures in the domains of computer vision and natural language processing. Integrating KANs into deep learning models for genomic tasks has not been explored. Here, we tested linear KANs (LKANs) and convolutional KANs (CKANs) as a replacement for MLP in baseline deep learning architectures for classification and generation of genomic sequences. We used three genomic benchmark datasets: Genomic Benchmarks, Genome Understanding Evaluation, and Flipon Benchmark. We demonstrated that LKANs outperformed both baseline and CKANs on almost all datasets. CKANs can achieve comparable results but struggle with scaling over large number of parameters. Ablation analysis demonstrated that the number of KAN layers correlates with the model performance. Overall, linear KANs show promising results in improving the performance of deep learning models with relatively small number of parameters. Unleashing KAN potential in different state-of-the-art deep learning architectures currently used in genomics requires further research.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.