Hanwen Zhang, Deng Xiong, Xianggen Liu, Jiancheng Lv
{"title":"MolEM: a unified generative framework for molecular graphs and sequential orders.","authors":"Hanwen Zhang, Deng Xiong, Xianggen Liu, Jiancheng Lv","doi":"10.1093/bib/bbaf094","DOIUrl":null,"url":null,"abstract":"<p><p>Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf094","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Structure-based drug design aims to generate molecules that fill the cavity of the protein pocket with a high binding affinity. Many contemporary studies employ sequential generative models. Their standard training method is to sequentialize molecular graphs into ordered sequences and then maximize the likelihood of the resulting sequences. However, the exact likelihood is computationally intractable, which involves a sum over all possible sequential orders. Molecular graphs lack an inherent order and the number of orders is factorial in the graph size. To avoid the intractable full space of factorially-many orders, existing works pre-define a fixed node ordering scheme such as depth-first search to sequentialize the 3D molecular graphs. In these cases, the training objectives are loose lower bounds of the exact likelihoods which are suboptimal for generation. To address the challenges, we propose a unified generative framework named MolEM to learn the 3D molecular graphs and corresponding sequential orders jointly. We derive a tight lower bound of the likelihood and maximize it via variational expectation-maximization algorithm, opening a new line of research in learning-based ordering schemes for 3D molecular graph generation. Besides, we first incorporate the molecular docking method QuickVina 2 to manipulate the binding poses, leading to accurate and flexible ligand conformations. Experimental results demonstrate that MolEM significantly outperforms baseline models in generating molecules with high binding affinities and realistic structures. Our approach efficiently approximates the true marginal graph likelihood and identifies reasonable orderings for 3D molecular graphs, aligning well with relevant chemical priors.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.