Jiani Zhan , Yijia Chen , Yuying Liu , Yunqiu Chen , Zhiyao Li , Xuewen Li , Zhenning He , Fangzhou Meng , Xiaoyang Qian , Lili Yang , Qing Yang
{"title":"IDO1-mediated AhR activation up-regulates pentose phosphate pathway via NRF2 to inhibit ferroptosis in lung cancer","authors":"Jiani Zhan , Yijia Chen , Yuying Liu , Yunqiu Chen , Zhiyao Li , Xuewen Li , Zhenning He , Fangzhou Meng , Xiaoyang Qian , Lili Yang , Qing Yang","doi":"10.1016/j.bcp.2025.116913","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis is a type of cell death marked by iron-dependent lipid peroxide accumulation. Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme in the catabolism of tryptophan through kynurenine pathway, participates in the development of multiple tumor types. However, the role of IDO1 in tumor ferroptosis is unclear. In this study, we identified IDO1 as a key regulator of ferroptosis in lung cancer. With Erastin-treated lung cancer cells, we found that IDO1 inhibited ferroptosis, reduced the generation of lipid peroxide and ROS. Mechanistically, IDO1 promoted the expression of nuclear factor erythroid 2-related factor 2 (NRF2) through activating aryl hydrocarbon receptor (AhR) pathway. IDO1 up-regulated the expression of solute carrier family 7 member 11 (SLC7A11) and the activity of pentose phosphate pathway (PPP) via AhR-NRF2 axis, promoted the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby inhibiting ferroptosis. Moreover, combined treatment with IDO1 inhibitor and Erastin inhibited tumor growth, down-regulated SLC7A11 expression and PPP activity, promoted tumor ferroptosis in lung cancer-bearing mice. In conclusion, this study revealed the function of IDO1 in lung cancer ferroptosis and provided a new strategy for lung cancer therapy.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"236 ","pages":"Article 116913"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225001753","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis is a type of cell death marked by iron-dependent lipid peroxide accumulation. Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme in the catabolism of tryptophan through kynurenine pathway, participates in the development of multiple tumor types. However, the role of IDO1 in tumor ferroptosis is unclear. In this study, we identified IDO1 as a key regulator of ferroptosis in lung cancer. With Erastin-treated lung cancer cells, we found that IDO1 inhibited ferroptosis, reduced the generation of lipid peroxide and ROS. Mechanistically, IDO1 promoted the expression of nuclear factor erythroid 2-related factor 2 (NRF2) through activating aryl hydrocarbon receptor (AhR) pathway. IDO1 up-regulated the expression of solute carrier family 7 member 11 (SLC7A11) and the activity of pentose phosphate pathway (PPP) via AhR-NRF2 axis, promoted the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby inhibiting ferroptosis. Moreover, combined treatment with IDO1 inhibitor and Erastin inhibited tumor growth, down-regulated SLC7A11 expression and PPP activity, promoted tumor ferroptosis in lung cancer-bearing mice. In conclusion, this study revealed the function of IDO1 in lung cancer ferroptosis and provided a new strategy for lung cancer therapy.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.