Adaptive evolution and reverse engineering to explore the low pH tolerance mechanisms of Streptomyces albulus.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuxi Liu, Tianyi Liu, Yulin Zhang, Liang Wang, Hongjian Zhang, Jianhua Zhang, Xusheng Chen
{"title":"Adaptive evolution and reverse engineering to explore the low pH tolerance mechanisms of <i>Streptomyces albulus</i>.","authors":"Yuxi Liu, Tianyi Liu, Yulin Zhang, Liang Wang, Hongjian Zhang, Jianhua Zhang, Xusheng Chen","doi":"10.1128/aem.00036-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptomyces albulus</i> is well-known as a cell factory for producing ε-poly-L-lysine (ε-PL), but its ability to produce effectively requires an environment with a pH of about 4.0. Unfortunately, prolonged exposure to low pH environment compromises the cellular integrity of <i>S. albulus</i>, leading to a decrease in the efficiency of ε-PL biosynthesis. To enhance the low pH tolerance of <i>S. albulus</i> and investigate its low pH tolerance mechanisms, we employed adaptive laboratory evolution (ALE) technology to evolve the <i>S. albulus</i> GS114 strain by progressively lowering the environmental pH. This process ultimately yielded the mutant strain ALE3.6, which exhibited significantly improved low pH tolerance at pH 3.6 and achieved a 37.9% increase in ε-PL production compared to the parental GS114 strain under the optimal fermentation condition. The physiological evaluation of the mutant strain ALE3.6 indicated a pronounced enhancement in the integrity of its cell membrane and cell wall under low pH conditions. To identify the key genes involved in low pH tolerance, we employed whole-genome resequencing and quantitative real-time PCR, which pinpointed <i>desA</i>, <i>gatD</i>, and <i>mamU</i> as critical contributors. We further validated the roles of these genes through reverse engineering, which improved both low pH tolerance and ε-PL production efficiency. Finally, we elucidated the response mechanisms of the <i>S. albulus</i> cell membrane and cell wall under low pH stress. This study enhances the understanding of low pH tolerance in the <i>Streptomyces</i> species, particularly regarding the production of valuable biochemical products under challenging environmental conditions.IMPORTANCEIn this study, we improved the viability and ε-poly-L-lysine production efficiency of <i>Streptomyces albulus</i> at low pH by staged adaptive laboratory evolution while simplifying the previously studied fed-batch fermentation strategy. We identified key genes associated with the mutant strains' cell membrane and cell wall phenotypes by utilizing whole-genome resequencing and reverse engineering. Subsequently, we validated the cell membrane and cell wall response mechanisms in <i>S. albulus</i> under low pH conditions.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0003625"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00036-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Streptomyces albulus is well-known as a cell factory for producing ε-poly-L-lysine (ε-PL), but its ability to produce effectively requires an environment with a pH of about 4.0. Unfortunately, prolonged exposure to low pH environment compromises the cellular integrity of S. albulus, leading to a decrease in the efficiency of ε-PL biosynthesis. To enhance the low pH tolerance of S. albulus and investigate its low pH tolerance mechanisms, we employed adaptive laboratory evolution (ALE) technology to evolve the S. albulus GS114 strain by progressively lowering the environmental pH. This process ultimately yielded the mutant strain ALE3.6, which exhibited significantly improved low pH tolerance at pH 3.6 and achieved a 37.9% increase in ε-PL production compared to the parental GS114 strain under the optimal fermentation condition. The physiological evaluation of the mutant strain ALE3.6 indicated a pronounced enhancement in the integrity of its cell membrane and cell wall under low pH conditions. To identify the key genes involved in low pH tolerance, we employed whole-genome resequencing and quantitative real-time PCR, which pinpointed desA, gatD, and mamU as critical contributors. We further validated the roles of these genes through reverse engineering, which improved both low pH tolerance and ε-PL production efficiency. Finally, we elucidated the response mechanisms of the S. albulus cell membrane and cell wall under low pH stress. This study enhances the understanding of low pH tolerance in the Streptomyces species, particularly regarding the production of valuable biochemical products under challenging environmental conditions.IMPORTANCEIn this study, we improved the viability and ε-poly-L-lysine production efficiency of Streptomyces albulus at low pH by staged adaptive laboratory evolution while simplifying the previously studied fed-batch fermentation strategy. We identified key genes associated with the mutant strains' cell membrane and cell wall phenotypes by utilizing whole-genome resequencing and reverse engineering. Subsequently, we validated the cell membrane and cell wall response mechanisms in S. albulus under low pH conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信