PbrBGAL6 promotes pollen tube growth by influencing apical pectin level in Pyrus bretschneideri.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yusheng Xu, Lan Xu, Mingliang Zhang, Hao Wang, Yuqian Wang, Xueping Zhang, Kaijing Zhang, Yihu Sui, Jingjing Qian, Shuangshuang Jia, Ming Qian, Guangrong Cui
{"title":"PbrBGAL6 promotes pollen tube growth by influencing apical pectin level in Pyrus bretschneideri.","authors":"Yusheng Xu, Lan Xu, Mingliang Zhang, Hao Wang, Yuqian Wang, Xueping Zhang, Kaijing Zhang, Yihu Sui, Jingjing Qian, Shuangshuang Jia, Ming Qian, Guangrong Cui","doi":"10.1186/s12864-025-11429-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>β-galactosidase (BGAL), which is an important cell wall-degrading enzyme, participates in various biological processes, but its effects on pollen tube growth (PTG) remain unclear.</p><p><strong>Results: </strong>We identified 12 PbrBGAL genes (named PbrBGAL1-12) in the pear (Pyrus bretschneideri) genome. PbrBGAL members, containing three conserved domains and two enzyme active sites, were grouped into six subclasses. They were distributed in seven chromosomes, with dispersed duplication revealed as the main replication event. PbrBGAL genes contained 1 to 24 exons and 0 to 23 introns, with exon/intron structure mostly conserved within each subclass except for subclass E. Analyses of tissue-specific expression indicated that only PbrBGAL6 was highly expressed specifically in anther and pollen, with decreasing expression levels during PTG. The effective inhibition of PbrBGAL6 expression using antisense oligodeoxynucleotide technology dramatically decreased BGAL enzymatic activity, promoted PTG and increased cytoplasmic leakage and tip widths. Furthermore, suppressing PbrBGAL6 transcription decreased the apical total and methylated pectin contents in pollen tubes by significantly increasing transcription of PbrPME11, PbrPG14, PbrPG20, PbrPG21 and PbrPG24.</p><p><strong>Conclusions: </strong>We identified 12 PbrBGAL genes in the pear genome, of which PbrBGAL6 precisely modulates the apical pectin content to mediate pear PTG through its effects on PbrPME11 and PbrPGs expression. This study provides direct evidence of the involvement of BGAL in the regulation of polar PTG.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"321"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11429-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: β-galactosidase (BGAL), which is an important cell wall-degrading enzyme, participates in various biological processes, but its effects on pollen tube growth (PTG) remain unclear.

Results: We identified 12 PbrBGAL genes (named PbrBGAL1-12) in the pear (Pyrus bretschneideri) genome. PbrBGAL members, containing three conserved domains and two enzyme active sites, were grouped into six subclasses. They were distributed in seven chromosomes, with dispersed duplication revealed as the main replication event. PbrBGAL genes contained 1 to 24 exons and 0 to 23 introns, with exon/intron structure mostly conserved within each subclass except for subclass E. Analyses of tissue-specific expression indicated that only PbrBGAL6 was highly expressed specifically in anther and pollen, with decreasing expression levels during PTG. The effective inhibition of PbrBGAL6 expression using antisense oligodeoxynucleotide technology dramatically decreased BGAL enzymatic activity, promoted PTG and increased cytoplasmic leakage and tip widths. Furthermore, suppressing PbrBGAL6 transcription decreased the apical total and methylated pectin contents in pollen tubes by significantly increasing transcription of PbrPME11, PbrPG14, PbrPG20, PbrPG21 and PbrPG24.

Conclusions: We identified 12 PbrBGAL genes in the pear genome, of which PbrBGAL6 precisely modulates the apical pectin content to mediate pear PTG through its effects on PbrPME11 and PbrPGs expression. This study provides direct evidence of the involvement of BGAL in the regulation of polar PTG.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信