Senescent Endothelial Cells in Cerebral Microcirculation Are Key Drivers of Age-Related Blood-Brain Barrier Disruption, Microvascular Rarefaction, and Neurovascular Coupling Impairment in Mice.
Boglarka Csik, Ádám Nyúl-Tóth, Rafal Gulej, Roland Patai, Tamas Kiss, Jordan Delfavero, Raghavendra Y Nagaraja, Priya Balasubramanian, Santny Shanmugarama, Anna Ungvari, Siva Sai Chandragiri, Kiana Vali Kordestan, Mark Nagykaldi, Peter Mukli, Andriy Yabluchanskiy, Sharon Negri, Stefano Tarantini, Shannon Conley, Tae Gyu Oh, Zoltan Ungvari, Anna Csiszar
{"title":"Senescent Endothelial Cells in Cerebral Microcirculation Are Key Drivers of Age-Related Blood-Brain Barrier Disruption, Microvascular Rarefaction, and Neurovascular Coupling Impairment in Mice.","authors":"Boglarka Csik, Ádám Nyúl-Tóth, Rafal Gulej, Roland Patai, Tamas Kiss, Jordan Delfavero, Raghavendra Y Nagaraja, Priya Balasubramanian, Santny Shanmugarama, Anna Ungvari, Siva Sai Chandragiri, Kiana Vali Kordestan, Mark Nagykaldi, Peter Mukli, Andriy Yabluchanskiy, Sharon Negri, Stefano Tarantini, Shannon Conley, Tae Gyu Oh, Zoltan Ungvari, Anna Csiszar","doi":"10.1111/acel.70048","DOIUrl":null,"url":null,"abstract":"<p><p>With advancing age, neurovascular dysfunction manifests as impaired neurovascular coupling (NVC), microvascular rarefaction, and blood-brain barrier (BBB) disruption, contributing to vascular cognitive impairment (VCI). Our previous research established a causal link between vascular senescence induced cerebromicrovascular dysfunction and cognitive decline in accelerated aging models. The present study examines whether chronological aging promotes endothelial senescence, adversely affecting neurovascular health, and whether senolytic therapies can enhance neurovascular function and cognitive performance in aged mice. We used transgenic p16-3MR mice to identify and eliminate senescent cells and employed genetic (ganciclovir) and pharmacological (ABT263/Navitoclax) senolytic approaches. Evaluations included spatial memory performance, NVC responses, cortical microvascular density, BBB permeability, and detection of senescent endothelial cells via flow cytometry. Brain endothelial cells exhibited heightened sensitivity to aging-induced senescence, undergoing senescence at a greater rate and earlier than other brain cell types, particularly during middle age. This microvascular endothelial cell senescence was associated with NVC dysfunction, microvascular rarefaction, BBB disruption, and deteriorating cognitive performance. On the other hand, senolytic treatments in aged mice improved NVC responses, BBB integrity, microvascular density, and learning capabilities. Notably, these findings suggest that the most effective time window for senolytic treatment is in middle-aged mice, where early intervention could better prevent neurovascular dysfunction and mitigate age-related cognitive impairment.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70048"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With advancing age, neurovascular dysfunction manifests as impaired neurovascular coupling (NVC), microvascular rarefaction, and blood-brain barrier (BBB) disruption, contributing to vascular cognitive impairment (VCI). Our previous research established a causal link between vascular senescence induced cerebromicrovascular dysfunction and cognitive decline in accelerated aging models. The present study examines whether chronological aging promotes endothelial senescence, adversely affecting neurovascular health, and whether senolytic therapies can enhance neurovascular function and cognitive performance in aged mice. We used transgenic p16-3MR mice to identify and eliminate senescent cells and employed genetic (ganciclovir) and pharmacological (ABT263/Navitoclax) senolytic approaches. Evaluations included spatial memory performance, NVC responses, cortical microvascular density, BBB permeability, and detection of senescent endothelial cells via flow cytometry. Brain endothelial cells exhibited heightened sensitivity to aging-induced senescence, undergoing senescence at a greater rate and earlier than other brain cell types, particularly during middle age. This microvascular endothelial cell senescence was associated with NVC dysfunction, microvascular rarefaction, BBB disruption, and deteriorating cognitive performance. On the other hand, senolytic treatments in aged mice improved NVC responses, BBB integrity, microvascular density, and learning capabilities. Notably, these findings suggest that the most effective time window for senolytic treatment is in middle-aged mice, where early intervention could better prevent neurovascular dysfunction and mitigate age-related cognitive impairment.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.