Investigation of a Palbociclib and Naringin Co-Amorphous System to Ameliorate Anticancer Potential: Insights on In Silico Modeling, Physicochemical Characterization, Ex Vivo Permeation, and In Vitro Efficacy.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Tanmoy Kanp, Anish Dhuri, Mayur Aalhate, Bharath Manoharan, Khushi Rode, Sharon Munagalasetty, Akella V S Sarma, Prasad Kshirsagar, Nagula Shankaraiah, Vasundhara Bhandari, Bhagwati Sharma, Pankaj Kumar Singh
{"title":"Investigation of a Palbociclib and Naringin Co-Amorphous System to Ameliorate Anticancer Potential: Insights on <i>In Silico Modeling,</i> Physicochemical Characterization, <i>Ex Vivo</i> Permeation, and <i>In Vitro</i> Efficacy.","authors":"Tanmoy Kanp, Anish Dhuri, Mayur Aalhate, Bharath Manoharan, Khushi Rode, Sharon Munagalasetty, Akella V S Sarma, Prasad Kshirsagar, Nagula Shankaraiah, Vasundhara Bhandari, Bhagwati Sharma, Pankaj Kumar Singh","doi":"10.1021/acs.molpharmaceut.4c01224","DOIUrl":null,"url":null,"abstract":"<p><p>Palbociclib (PCB), categorized as a BCS class II drug, is characterized by low aqueous solubility. The drug's limited aqueous solubility and poor dissolution rate pose significant challenges, potentially affecting its absorption and overall therapeutic efficacy. Co-amorphous (CAM) systems have been extensively investigated as a potential solution to overcome the issue of poor water solubility in numerous active pharmaceutical ingredients. This research study hypothesized that the coamorphization process involving the compounds PCB and naringin (NG) would lead to an increase in the aqueous solubility of PCB. Additionally, it was proposed that this process would also enhance the anticancer impact of PCB since NG is recognized for its pharmacological impact on breast cancer cells. <i>In silico</i> studies, it was revealed that PCB could interact with NG via hydrogen bonding. Furthermore, the prepared CAM (PCB-NG-CAM) system using PCB and NG was characterized by PXRD, DSC, FTIR, Raman spectroscopy, solid-state <sup>13</sup>C nuclear magnetic resonance, and SEM. PCB-NG-CAM exhibited a significant increase in solubility, dissolution rate, and intestinal permeation compared to crystalline PCB. Furthermore, PCB-NG-CAM exhibited excellent physical stability at 40 °C/75% RH for up to 3 months. In addition, PCB-NG-CAM showed superior <i>in vitro</i> efficacy on MDA-MB-231 triple-negative breast cancer cell lines. PCB-NG-CAM resulted in a 2.24 times higher apoptosis rate and a 1.6 times greater ROS production than free PCB. Additionally, the inhibitory effect on cell migration and alterations in MMP was more pronounced in cells treated with PCB-NG-CAM. Therefore, this study indicated that PCB-NG-CAM has the potential to significantly improve the oral administration, solubility, and therapeutic efficacy of PCB.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01224","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Palbociclib (PCB), categorized as a BCS class II drug, is characterized by low aqueous solubility. The drug's limited aqueous solubility and poor dissolution rate pose significant challenges, potentially affecting its absorption and overall therapeutic efficacy. Co-amorphous (CAM) systems have been extensively investigated as a potential solution to overcome the issue of poor water solubility in numerous active pharmaceutical ingredients. This research study hypothesized that the coamorphization process involving the compounds PCB and naringin (NG) would lead to an increase in the aqueous solubility of PCB. Additionally, it was proposed that this process would also enhance the anticancer impact of PCB since NG is recognized for its pharmacological impact on breast cancer cells. In silico studies, it was revealed that PCB could interact with NG via hydrogen bonding. Furthermore, the prepared CAM (PCB-NG-CAM) system using PCB and NG was characterized by PXRD, DSC, FTIR, Raman spectroscopy, solid-state 13C nuclear magnetic resonance, and SEM. PCB-NG-CAM exhibited a significant increase in solubility, dissolution rate, and intestinal permeation compared to crystalline PCB. Furthermore, PCB-NG-CAM exhibited excellent physical stability at 40 °C/75% RH for up to 3 months. In addition, PCB-NG-CAM showed superior in vitro efficacy on MDA-MB-231 triple-negative breast cancer cell lines. PCB-NG-CAM resulted in a 2.24 times higher apoptosis rate and a 1.6 times greater ROS production than free PCB. Additionally, the inhibitory effect on cell migration and alterations in MMP was more pronounced in cells treated with PCB-NG-CAM. Therefore, this study indicated that PCB-NG-CAM has the potential to significantly improve the oral administration, solubility, and therapeutic efficacy of PCB.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信