Cross-Interaction with Amyloid-β Drives Pathogenic Structural Transformation within the Amyloidogenic Core Region of TDP-43.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Adam J Gatch, Feng Ding
{"title":"Cross-Interaction with Amyloid-β Drives Pathogenic Structural Transformation within the Amyloidogenic Core Region of TDP-43.","authors":"Adam J Gatch, Feng Ding","doi":"10.1021/acschemneuro.5c00084","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the world's most prevalent neurodegenerative disorder, characterized neuropathologically by senile plaques and neurofibrillary tangles formed by amyloid-β (Aβ) and tau, respectively. Notably, a subset of AD patients also exhibits pathological aggregates composed of TAR DNA-Binding Protein 43 (TDP-43). Clinically, the presence of TDP-43 copathology in AD correlates with more severe cognitive decline and faster disease progression. While previous studies have shown that TDP-43 can exacerbate Aβ toxicity and modulate its assembly dynamics by delaying fibrillization and promoting oligomer formation, the impact of the Aβ interaction on the structural dynamics and aggregation of TDP-43 remains unclear. Here, we employed all-atom discrete molecular dynamics simulations to study the direct interaction between Aβ42, the more amyloidogenic isoform of Aβ, and the amyloidogenic core region (ACR) of TDP-43, which spans residues 311-360 and is critical for TDP-43 aggregation. We found that monomeric Aβ42 could strongly bind to the ACR, establishing sustained contact through intermolecular hydrogen bonding. In contrast, simulation of ACR dimerization revealed a transient helix-helix interaction, experimentally known to drive the phase separation behavior of TDP-43. The binding of the ACR to an Aβ42 fibril seed resulted in significant structural transformation, with the complete unfolding of the helical region being observed. Furthermore, interaction with the Aβ42 fibril seed catalyzed the formation of a parallel, in-register intermolecular β-sheet between two ACR monomers. Collectively, our computational study provides important theoretical insights into TDP-43 pathology in AD, demonstrating that Aβ42, especially in its fibrillar form, may catalyze the pathogenic structural transformation within the TDP-43 ACR that initiates its aberrant aggregation.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00084","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is the world's most prevalent neurodegenerative disorder, characterized neuropathologically by senile plaques and neurofibrillary tangles formed by amyloid-β (Aβ) and tau, respectively. Notably, a subset of AD patients also exhibits pathological aggregates composed of TAR DNA-Binding Protein 43 (TDP-43). Clinically, the presence of TDP-43 copathology in AD correlates with more severe cognitive decline and faster disease progression. While previous studies have shown that TDP-43 can exacerbate Aβ toxicity and modulate its assembly dynamics by delaying fibrillization and promoting oligomer formation, the impact of the Aβ interaction on the structural dynamics and aggregation of TDP-43 remains unclear. Here, we employed all-atom discrete molecular dynamics simulations to study the direct interaction between Aβ42, the more amyloidogenic isoform of Aβ, and the amyloidogenic core region (ACR) of TDP-43, which spans residues 311-360 and is critical for TDP-43 aggregation. We found that monomeric Aβ42 could strongly bind to the ACR, establishing sustained contact through intermolecular hydrogen bonding. In contrast, simulation of ACR dimerization revealed a transient helix-helix interaction, experimentally known to drive the phase separation behavior of TDP-43. The binding of the ACR to an Aβ42 fibril seed resulted in significant structural transformation, with the complete unfolding of the helical region being observed. Furthermore, interaction with the Aβ42 fibril seed catalyzed the formation of a parallel, in-register intermolecular β-sheet between two ACR monomers. Collectively, our computational study provides important theoretical insights into TDP-43 pathology in AD, demonstrating that Aβ42, especially in its fibrillar form, may catalyze the pathogenic structural transformation within the TDP-43 ACR that initiates its aberrant aggregation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信