{"title":"Critical Assessment of RNA and DNA Structure Predictions via Artificial Intelligence: The Imitation Game.","authors":"Christina Bergonzo, Alexander Grishaev","doi":"10.1021/acs.jcim.5c00245","DOIUrl":null,"url":null,"abstract":"<p><p>Computational predictions of biomolecular structure via artificial intelligence (AI) based approaches, as exemplified by AlphaFold software, have the potential to model of all life's biomolecules. We performed oligonucleotide structure prediction and gauged the accuracy of the AI-generated models via their agreement with experimental solution-state observables. We find parts of these models in good agreement with experimental data, and others falling short of the ground truth. The latter include internal or capping loops, noncanonical base pairings, and regions involving conformational flexibility, all essential for RNA folding, interactions, and function. We estimate root-mean-square (r.m.s.) errors in predicted nucleotide bond vector orientations ranging between 7° and 30°, with higher accuracies for simpler architectures of individual canonically paired helical stems. These mixed results highlight the necessity of experimental validation of AI-based oligonucleotide model predictions and their current tendency to mimic the training data set rather than reproduce the underlying reality.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00245","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Computational predictions of biomolecular structure via artificial intelligence (AI) based approaches, as exemplified by AlphaFold software, have the potential to model of all life's biomolecules. We performed oligonucleotide structure prediction and gauged the accuracy of the AI-generated models via their agreement with experimental solution-state observables. We find parts of these models in good agreement with experimental data, and others falling short of the ground truth. The latter include internal or capping loops, noncanonical base pairings, and regions involving conformational flexibility, all essential for RNA folding, interactions, and function. We estimate root-mean-square (r.m.s.) errors in predicted nucleotide bond vector orientations ranging between 7° and 30°, with higher accuracies for simpler architectures of individual canonically paired helical stems. These mixed results highlight the necessity of experimental validation of AI-based oligonucleotide model predictions and their current tendency to mimic the training data set rather than reproduce the underlying reality.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.