Molecular Insights into Propofol's Neurotoxic Effects: Targeting the HTR1A/cAMP Signaling Pathway.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Gongrui Zhou, Shubin Zheng, Yuhai Xu
{"title":"Molecular Insights into Propofol's Neurotoxic Effects: Targeting the HTR1A/cAMP Signaling Pathway.","authors":"Gongrui Zhou, Shubin Zheng, Yuhai Xu","doi":"10.1021/acs.chemrestox.4c00339","DOIUrl":null,"url":null,"abstract":"<p><p>Propofol, a commonly used anesthetic in clinical practice, is favored for its rapid onset and short duration of action. Despite its widespread use, the potential neurotoxic effects of propofol remain insufficiently understood. This study utilized high-throughput transcriptome sequencing and network pharmacology to investigate the mechanisms by which propofol induces neurotoxicity in rat hippocampal neural progenitor cells (NPCs), focusing on the HTR1A/cAMP signaling pathway. Our findings reveal that propofol significantly inhibits the HTR1A/cAMP pathway, leading to altered expression of key genes that affect neuronal activity, inflammatory responses, and apoptosis. In vivo experiments further demonstrate that propofol impairs spatial learning and memory in rats, an effect that is partially reversed by overexpression of HTR1A. These results not only elucidate the molecular mechanisms underlying propofol-induced neuronal damage but also provide critical insights into the safe application of propofol in clinical settings.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00339","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Propofol, a commonly used anesthetic in clinical practice, is favored for its rapid onset and short duration of action. Despite its widespread use, the potential neurotoxic effects of propofol remain insufficiently understood. This study utilized high-throughput transcriptome sequencing and network pharmacology to investigate the mechanisms by which propofol induces neurotoxicity in rat hippocampal neural progenitor cells (NPCs), focusing on the HTR1A/cAMP signaling pathway. Our findings reveal that propofol significantly inhibits the HTR1A/cAMP pathway, leading to altered expression of key genes that affect neuronal activity, inflammatory responses, and apoptosis. In vivo experiments further demonstrate that propofol impairs spatial learning and memory in rats, an effect that is partially reversed by overexpression of HTR1A. These results not only elucidate the molecular mechanisms underlying propofol-induced neuronal damage but also provide critical insights into the safe application of propofol in clinical settings.

异丙酚的神经毒性作用:靶向HTR1A/cAMP信号通路
异丙酚是临床上常用的麻醉剂,起效快,作用时间短。尽管丙泊酚被广泛使用,但其潜在的神经毒性作用仍未得到充分的了解。本研究利用高通量转录组测序和网络药理学研究了异丙酚诱导大鼠海马神经祖细胞(npc)神经毒性的机制,重点研究了HTR1A/cAMP信号通路。我们的研究结果表明,异丙酚显著抑制HTR1A/cAMP通路,导致影响神经元活性、炎症反应和细胞凋亡的关键基因表达改变。体内实验进一步证明,异丙酚会损害大鼠的空间学习和记忆,而这种影响会被HTR1A的过表达部分逆转。这些结果不仅阐明了异丙酚诱导神经元损伤的分子机制,而且为异丙酚在临床环境中的安全应用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信