Return trajectory and the forecastability of bitcoin returns

IF 2.6 Q2 BUSINESS, FINANCE
Simon Rudkin, Wanling Rudkin, Paweł Dłotko
{"title":"Return trajectory and the forecastability of bitcoin returns","authors":"Simon Rudkin,&nbsp;Wanling Rudkin,&nbsp;Paweł Dłotko","doi":"10.1111/fire.12420","DOIUrl":null,"url":null,"abstract":"<p>This paper tests the extent to which the ability to correctly predict subsequent bitcoin (BTC) return signs is dependent upon historic BTC return trajectories. Using topological data analysis ball mapper (TDABM), we demonstrate that the performance of random forest and logit regression models varies according to return trajectory. A novel use of TDABM as a forecast model shows that mapping historic return trajectories can also produce more accurate directional return forecasts. Our approach highlights how the predictability of BTC price change direction is dependent on return trajectories. Visualizing historic return trajectories when forming and evaluating return forecasts is imperative.</p>","PeriodicalId":47617,"journal":{"name":"FINANCIAL REVIEW","volume":"60 2","pages":"509-539"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/fire.12420","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FINANCIAL REVIEW","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fire.12420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper tests the extent to which the ability to correctly predict subsequent bitcoin (BTC) return signs is dependent upon historic BTC return trajectories. Using topological data analysis ball mapper (TDABM), we demonstrate that the performance of random forest and logit regression models varies according to return trajectory. A novel use of TDABM as a forecast model shows that mapping historic return trajectories can also produce more accurate directional return forecasts. Our approach highlights how the predictability of BTC price change direction is dependent on return trajectories. Visualizing historic return trajectories when forming and evaluating return forecasts is imperative.

Abstract Image

比特币的回报轨迹和可预测性
本文测试了正确预测后续比特币(BTC)回报信号的能力在多大程度上取决于历史比特币的回报轨迹。利用拓扑数据分析球映射器(TDABM),我们证明了随机森林和logit回归模型的性能随回归轨迹的不同而变化。TDABM作为预测模型的一种新应用表明,绘制历史回产轨迹也可以产生更准确的方向回产预测。我们的方法强调了比特币价格变化方向的可预测性如何依赖于回报轨迹。在形成和评估回报预测时,可视化历史回报轨迹是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FINANCIAL REVIEW
FINANCIAL REVIEW BUSINESS, FINANCE-
CiteScore
3.30
自引率
28.10%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信