{"title":"Towards a unified framework for single-cell -omics-based disease prediction through AI","authors":"Matteo Barberis, Jinkun Xie","doi":"10.1002/ctm2.70290","DOIUrl":null,"url":null,"abstract":"<p>Single-cell omics has emerged as a powerful tool for elucidating cellular heterogeneity in health and disease. Parallel advances in artificial intelligence (AI), particularly in pattern recognition, feature extraction and predictive modelling, now offer unprecedented opportunities to translate these insights into clinical applications. Here, we propose single-cell -omics-based Disease Predictor through AI (scDisPreAI), a unified framework that leverages AI to integrate single-cell -omics data, enabling robust disease and disease-stage prediction, alongside biomarker discovery. The foundation of scDisPreAI lies in assembling a large, standardised database spanning diverse diseases and multiple disease stages. Rigorous data preprocessing, including normalisation and batch effect correction, ensures that biological rather than technical variation drives downstream models. Machine learning pipelines or deep learning architectures can then be trained in a multi-task fashion, classifying both disease identity and disease stage. Crucially, interpretability techniques such as SHapley Additive exPlanations (SHAP) values or attention weights pinpoint the genes most influential for these predictions, highlighting biomarkers that may be shared across diseases or disease stages. By consolidating predictive modelling with interpretable biomarker identification, scDisPreAI may be deployed as a clinical decision assistant, flagging potential therapeutic targets for drug repurposing and guiding tailored treatments. In this editorial, we propose the technical and methodological roadmap for scDisPreAI and emphasises future directions, including the incorporation of multi-omics, standardised protocols and prospective clinical validation, to fully harness the transformative potential of single-cell AI in precision medicine.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 4","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70290","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70290","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell omics has emerged as a powerful tool for elucidating cellular heterogeneity in health and disease. Parallel advances in artificial intelligence (AI), particularly in pattern recognition, feature extraction and predictive modelling, now offer unprecedented opportunities to translate these insights into clinical applications. Here, we propose single-cell -omics-based Disease Predictor through AI (scDisPreAI), a unified framework that leverages AI to integrate single-cell -omics data, enabling robust disease and disease-stage prediction, alongside biomarker discovery. The foundation of scDisPreAI lies in assembling a large, standardised database spanning diverse diseases and multiple disease stages. Rigorous data preprocessing, including normalisation and batch effect correction, ensures that biological rather than technical variation drives downstream models. Machine learning pipelines or deep learning architectures can then be trained in a multi-task fashion, classifying both disease identity and disease stage. Crucially, interpretability techniques such as SHapley Additive exPlanations (SHAP) values or attention weights pinpoint the genes most influential for these predictions, highlighting biomarkers that may be shared across diseases or disease stages. By consolidating predictive modelling with interpretable biomarker identification, scDisPreAI may be deployed as a clinical decision assistant, flagging potential therapeutic targets for drug repurposing and guiding tailored treatments. In this editorial, we propose the technical and methodological roadmap for scDisPreAI and emphasises future directions, including the incorporation of multi-omics, standardised protocols and prospective clinical validation, to fully harness the transformative potential of single-cell AI in precision medicine.
期刊介绍:
Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.