Towards a unified framework for single-cell -omics-based disease prediction through AI

IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Matteo Barberis, Jinkun Xie
{"title":"Towards a unified framework for single-cell -omics-based disease prediction through AI","authors":"Matteo Barberis,&nbsp;Jinkun Xie","doi":"10.1002/ctm2.70290","DOIUrl":null,"url":null,"abstract":"<p>Single-cell omics has emerged as a powerful tool for elucidating cellular heterogeneity in health and disease. Parallel advances in artificial intelligence (AI), particularly in pattern recognition, feature extraction and predictive modelling, now offer unprecedented opportunities to translate these insights into clinical applications. Here, we propose single-cell -omics-based Disease Predictor through AI (scDisPreAI), a unified framework that leverages AI to integrate single-cell -omics data, enabling robust disease and disease-stage prediction, alongside biomarker discovery. The foundation of scDisPreAI lies in assembling a large, standardised database spanning diverse diseases and multiple disease stages. Rigorous data preprocessing, including normalisation and batch effect correction, ensures that biological rather than technical variation drives downstream models. Machine learning pipelines or deep learning architectures can then be trained in a multi-task fashion, classifying both disease identity and disease stage. Crucially, interpretability techniques such as SHapley Additive exPlanations (SHAP) values or attention weights pinpoint the genes most influential for these predictions, highlighting biomarkers that may be shared across diseases or disease stages. By consolidating predictive modelling with interpretable biomarker identification, scDisPreAI may be deployed as a clinical decision assistant, flagging potential therapeutic targets for drug repurposing and guiding tailored treatments. In this editorial, we propose the technical and methodological roadmap for scDisPreAI and emphasises future directions, including the incorporation of multi-omics, standardised protocols and prospective clinical validation, to fully harness the transformative potential of single-cell AI in precision medicine.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 4","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70290","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70290","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell omics has emerged as a powerful tool for elucidating cellular heterogeneity in health and disease. Parallel advances in artificial intelligence (AI), particularly in pattern recognition, feature extraction and predictive modelling, now offer unprecedented opportunities to translate these insights into clinical applications. Here, we propose single-cell -omics-based Disease Predictor through AI (scDisPreAI), a unified framework that leverages AI to integrate single-cell -omics data, enabling robust disease and disease-stage prediction, alongside biomarker discovery. The foundation of scDisPreAI lies in assembling a large, standardised database spanning diverse diseases and multiple disease stages. Rigorous data preprocessing, including normalisation and batch effect correction, ensures that biological rather than technical variation drives downstream models. Machine learning pipelines or deep learning architectures can then be trained in a multi-task fashion, classifying both disease identity and disease stage. Crucially, interpretability techniques such as SHapley Additive exPlanations (SHAP) values or attention weights pinpoint the genes most influential for these predictions, highlighting biomarkers that may be shared across diseases or disease stages. By consolidating predictive modelling with interpretable biomarker identification, scDisPreAI may be deployed as a clinical decision assistant, flagging potential therapeutic targets for drug repurposing and guiding tailored treatments. In this editorial, we propose the technical and methodological roadmap for scDisPreAI and emphasises future directions, including the incorporation of multi-omics, standardised protocols and prospective clinical validation, to fully harness the transformative potential of single-cell AI in precision medicine.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.90
自引率
1.90%
发文量
450
审稿时长
4 weeks
期刊介绍: Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信