Tsvetina D. Cherneva, Mina M. Todorova, Rumyana I. Bakalska, Ernst Horkel, Vassil B. Delchev
{"title":"Excited-state proton transfer in the rare isoguanine-isocytosine base pair in water solution","authors":"Tsvetina D. Cherneva, Mina M. Todorova, Rumyana I. Bakalska, Ernst Horkel, Vassil B. Delchev","doi":"10.1007/s00894-025-06351-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>With the current research, we aim to study the mechanism of the excites state proton transfer (ESPT) between the nucleobases isoguanine (iG) and isocytosine (iC) in their Watson–Crick model. Such research is proposed for the first time and it can partially reveal the question why the nature “has chosen” guanine and cytosine for pairing in the DNA duplex and not their analogs (isoforms). The UV irradiation of the water solution of equimolar mixture of iG and iC implies a tautomeric conversion between the nucleobases. In the research, the mechanism of the ESPT was followed and clarified for the first time. All this reflects to the photostability of the iG-iC base pair in water solution.</p><h3>Methods</h3><p>For the purposes of the current research, we chose to use the TD DFT with the hybrid functional B3LYP in combination with the aug-cc-pVDZ basis set. The water surroundings are modeled according to the polarizable continuum model (PCM) modeling the solvation effects on the studying systems. Linear interpolation and intrinsic reaction coordinate approach were applied for the reaction path follow of the ESPT.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06351-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
With the current research, we aim to study the mechanism of the excites state proton transfer (ESPT) between the nucleobases isoguanine (iG) and isocytosine (iC) in their Watson–Crick model. Such research is proposed for the first time and it can partially reveal the question why the nature “has chosen” guanine and cytosine for pairing in the DNA duplex and not their analogs (isoforms). The UV irradiation of the water solution of equimolar mixture of iG and iC implies a tautomeric conversion between the nucleobases. In the research, the mechanism of the ESPT was followed and clarified for the first time. All this reflects to the photostability of the iG-iC base pair in water solution.
Methods
For the purposes of the current research, we chose to use the TD DFT with the hybrid functional B3LYP in combination with the aug-cc-pVDZ basis set. The water surroundings are modeled according to the polarizable continuum model (PCM) modeling the solvation effects on the studying systems. Linear interpolation and intrinsic reaction coordinate approach were applied for the reaction path follow of the ESPT.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.