{"title":"Locally distinguishing nonlocal orthogonal product states with entanglement as a universal auxiliary resource","authors":"Tian-Qing Cao, Bo-Hui Gao, Qiao-Ling Xin, Lu Zhao","doi":"10.1007/s11128-025-04727-4","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, three classes of orthogonal product states in <span>\\(\\mathbb {C}^m\\otimes \\mathbb {C}^n(m\\ge 3, n\\ge 3)\\)</span> which cannot be exactly discriminated by local operations and classical communication (LOCC) have been constructed, respectively, by Xu et al. (Quantum Inf. Process. 20: 128, 2021) and Zhu et al. (Physica A 624: 128956, 2023). However, it is interesting to know, in order to perfectly distinguish these states by LOCC, how much entanglement resources are sufficient and/or necessary and whether it is possible to find a universal auxiliary resource. In this paper, we present that by using only one two-qubit maximally entangled state as a general auxiliary resource, the above locally indistinguishable states can all be perfectly identified by LOCC. And the general process of auxiliary local discrimination using entanglement is discussed in detail. The local distinguishing protocols we designed not only utilize minimal amount of assisted entanglement, but also show that the strength of these nonlocal sets is minimal from the point of view of auxiliary resources.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04727-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, three classes of orthogonal product states in \(\mathbb {C}^m\otimes \mathbb {C}^n(m\ge 3, n\ge 3)\) which cannot be exactly discriminated by local operations and classical communication (LOCC) have been constructed, respectively, by Xu et al. (Quantum Inf. Process. 20: 128, 2021) and Zhu et al. (Physica A 624: 128956, 2023). However, it is interesting to know, in order to perfectly distinguish these states by LOCC, how much entanglement resources are sufficient and/or necessary and whether it is possible to find a universal auxiliary resource. In this paper, we present that by using only one two-qubit maximally entangled state as a general auxiliary resource, the above locally indistinguishable states can all be perfectly identified by LOCC. And the general process of auxiliary local discrimination using entanglement is discussed in detail. The local distinguishing protocols we designed not only utilize minimal amount of assisted entanglement, but also show that the strength of these nonlocal sets is minimal from the point of view of auxiliary resources.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.