{"title":"Transport phenomena and KSS bound in quantum-corrected AdS black holes","authors":"Behnam Pourhassan, İzzet Sakallı","doi":"10.1140/epjc/s10052-025-14103-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study quantum effects on transport properties of charged anti-de Sitter (AdS) black holes, focusing on non-perturbative corrections to the shear viscosity-to-entropy ratio. We consider exponential corrections to both the entropy and transport coefficients, examining their impact on the Kovtun–Son–Starinets (KSS) bound. Through detailed analysis, we demonstrate that quantum corrections significantly modify transport phenomena, particularly in the small-horizon-radius regime. We explore three scenarios: unmodified shear viscosity with quantum-corrected entropy, quantum corrections to both quantities, and preservation of the universal ratio. Our results show that electrical conductivity, bulk viscosity, and thermal conductivity receive substantial modifications from quantum effects while maintaining consistency with established transport laws. The analysis reveals that for the positive correction coefficient, the KSS bound can be violated, while for the negative correction coefficient, it remains valid. We demonstrate these effects through numerical analysis and graphical representations, providing insight into quantum transport phenomena in strongly coupled systems.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14103-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14103-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study quantum effects on transport properties of charged anti-de Sitter (AdS) black holes, focusing on non-perturbative corrections to the shear viscosity-to-entropy ratio. We consider exponential corrections to both the entropy and transport coefficients, examining their impact on the Kovtun–Son–Starinets (KSS) bound. Through detailed analysis, we demonstrate that quantum corrections significantly modify transport phenomena, particularly in the small-horizon-radius regime. We explore three scenarios: unmodified shear viscosity with quantum-corrected entropy, quantum corrections to both quantities, and preservation of the universal ratio. Our results show that electrical conductivity, bulk viscosity, and thermal conductivity receive substantial modifications from quantum effects while maintaining consistency with established transport laws. The analysis reveals that for the positive correction coefficient, the KSS bound can be violated, while for the negative correction coefficient, it remains valid. We demonstrate these effects through numerical analysis and graphical representations, providing insight into quantum transport phenomena in strongly coupled systems.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.