A Multiphysics Dataset Generation Procedure for the Data-Driven Modeling of Traction Electric Motors

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Simone Ferrari;Luigi Solimene;Riccardo Torchio;Costanza Anerdi;Fabio Freschi;Luca Giaccone;Gianmarco Lorenti;Francesco Lucchinizz;Piergiorgio Alotto;Gianmario Pellegrino;Maurizio Repetto
{"title":"A Multiphysics Dataset Generation Procedure for the Data-Driven Modeling of Traction Electric Motors","authors":"Simone Ferrari;Luigi Solimene;Riccardo Torchio;Costanza Anerdi;Fabio Freschi;Luca Giaccone;Gianmarco Lorenti;Francesco Lucchinizz;Piergiorgio Alotto;Gianmario Pellegrino;Maurizio Repetto","doi":"10.1109/ACCESS.2025.3554147","DOIUrl":null,"url":null,"abstract":"This paper presents the work done to address two main challenges in the simulation and design of electric machines for traction applications. On one hand, the modeling process is becoming increasingly complex as the demand for higher efficiency, high power density, and low cost pushes the speed and compactness of the motor to high levels. As a result, the interactions between multiple physical domains (e.g., electromagnetic, thermal, structural, etc.) can no longer be neglected, even in preliminary designs. Consequently, research into new modeling solutions in this area is currently active and widespread. On the other hand, new computational methodologies based on data-driven machine learning are becoming increasingly widespread as the computational power available for this task increases. However, to assess their performance and realize their potential in surrogate and meta-modeling electrical machines, a standardized benchmark for comparing these new approaches is needed. To address these challenges, the paper presents an open-source dataset that provides a reliable foundation for the multi-physical analysis of electric motors used in traction applications. One of the main novelties of this approach is that geometrical and physical data of the motor configuration are shared among different analysis codes. Attention is focused on tailoring the numerical discretization so that the same mesh can be used in different domains, avoiding data conversions and possible numerical inaccuracies. The paper thoroughly explains the workflow developed to create the database, detailing the methodological aspects. Ultimately, the resulting database is made available as an open resource for other researchers in the field. The resulting dataset represents a tool for benchmarking advanced computational methodologies and promoting reproducibility in research.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"54534-54546"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937701","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10937701/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the work done to address two main challenges in the simulation and design of electric machines for traction applications. On one hand, the modeling process is becoming increasingly complex as the demand for higher efficiency, high power density, and low cost pushes the speed and compactness of the motor to high levels. As a result, the interactions between multiple physical domains (e.g., electromagnetic, thermal, structural, etc.) can no longer be neglected, even in preliminary designs. Consequently, research into new modeling solutions in this area is currently active and widespread. On the other hand, new computational methodologies based on data-driven machine learning are becoming increasingly widespread as the computational power available for this task increases. However, to assess their performance and realize their potential in surrogate and meta-modeling electrical machines, a standardized benchmark for comparing these new approaches is needed. To address these challenges, the paper presents an open-source dataset that provides a reliable foundation for the multi-physical analysis of electric motors used in traction applications. One of the main novelties of this approach is that geometrical and physical data of the motor configuration are shared among different analysis codes. Attention is focused on tailoring the numerical discretization so that the same mesh can be used in different domains, avoiding data conversions and possible numerical inaccuracies. The paper thoroughly explains the workflow developed to create the database, detailing the methodological aspects. Ultimately, the resulting database is made available as an open resource for other researchers in the field. The resulting dataset represents a tool for benchmarking advanced computational methodologies and promoting reproducibility in research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信