Optimum Selection of Lithium Iron Phosphate Battery Cells for Electric Vehicles

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Arda Akyildiz;Bati E. Ergun;Ege Uzun;Mustafa A. Zehir;Cavit F. Kucuktezcan;Ilhan Kocaarslan;Mehmet O. Gulbahce
{"title":"Optimum Selection of Lithium Iron Phosphate Battery Cells for Electric Vehicles","authors":"Arda Akyildiz;Bati E. Ergun;Ege Uzun;Mustafa A. Zehir;Cavit F. Kucuktezcan;Ilhan Kocaarslan;Mehmet O. Gulbahce","doi":"10.1109/ACCESS.2025.3553081","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic approach to selecting lithium iron phosphate (LFP) battery cells for electric vehicle (EV) applications, considering cost, volume, aging characteristics, and overall performance. A battery selection algorithm is developed, and to investigate its functionality, a case study to evaluate four different LFP battery cell models based on their long-term behavior in a 40 kWh battery pack is conducted. The algorithm integrates a vehicle energy consumption model to better account for the aging impacts of different cell choices, where battery performance is analyzed based on the Worldwide Harmonised Light Vehicles Test Procedure (WLTP) over a 10-year simulated period, considering five driving cycles per day. In order to ensure a fair assessment, the model accounts for variations in battery pack weight as the sole influencing factor on vehicle dynamics. The results compare vehicle range, battery pack mass, cost, cell degradation, and volume for each battery option. The case study findings indicate that the developed method found A123 Systems ANR 26650m1 battery cell superior among the considered four options offering the best trade-off between longevity and cost-effectiveness, making it a highly suitable choice for durable and efficient EV battery packs. This study underscores the importance of considering several critical factors including aging based on detailed driving cycles, together for the most suitable battery selection in designing cost-effective, long-lasting EV energy storage solutions.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"55070-55080"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935344","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10935344/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a systematic approach to selecting lithium iron phosphate (LFP) battery cells for electric vehicle (EV) applications, considering cost, volume, aging characteristics, and overall performance. A battery selection algorithm is developed, and to investigate its functionality, a case study to evaluate four different LFP battery cell models based on their long-term behavior in a 40 kWh battery pack is conducted. The algorithm integrates a vehicle energy consumption model to better account for the aging impacts of different cell choices, where battery performance is analyzed based on the Worldwide Harmonised Light Vehicles Test Procedure (WLTP) over a 10-year simulated period, considering five driving cycles per day. In order to ensure a fair assessment, the model accounts for variations in battery pack weight as the sole influencing factor on vehicle dynamics. The results compare vehicle range, battery pack mass, cost, cell degradation, and volume for each battery option. The case study findings indicate that the developed method found A123 Systems ANR 26650m1 battery cell superior among the considered four options offering the best trade-off between longevity and cost-effectiveness, making it a highly suitable choice for durable and efficient EV battery packs. This study underscores the importance of considering several critical factors including aging based on detailed driving cycles, together for the most suitable battery selection in designing cost-effective, long-lasting EV energy storage solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信