Enhanced Privacy and Communication Efficiency in Non-IID Federated Learning With Adaptive Quantization and Differential Privacy

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Emre Ardıç;Yakup Genç
{"title":"Enhanced Privacy and Communication Efficiency in Non-IID Federated Learning With Adaptive Quantization and Differential Privacy","authors":"Emre Ardıç;Yakup Genç","doi":"10.1109/ACCESS.2025.3554138","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a distributed machine learning method where multiple devices collaboratively train a model under the management of a central server without sharing underlying data. One of the key challenges of FL is the communication bottleneck caused by variations in connection speed and bandwidth across devices. Therefore, it is essential to reduce the size of transmitted data during training. Additionally, there is a potential risk of exposing sensitive information through the model or gradient analysis during training. To address both privacy and communication efficiency, we combine differential privacy (DP) and adaptive quantization methods. We use Laplacian-based DP to preserve privacy, which is relatively underexplored in FL and offers tighter privacy guarantees than Gaussian-based DP. We propose a simple and efficient global bit-length scheduler using round-based cosine annealing, along with a client-based scheduler that dynamically adapts based on client contribution estimated through dataset entropy analysis. We evaluate our approach through extensive experiments on CIFAR10, MNIST, and medical imaging datasets, using non-IID data distributions across varying client counts, bit-length schedulers, and privacy budgets. The results show that our adaptive quantization methods reduce total communicated data by up to 52.64% for MNIST, 45.06% for CIFAR10, and 31% to 37% for medical imaging datasets compared to 32-bit float training while maintaining competitive model accuracy and ensuring robust privacy through DP.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"54322-54337"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10937694/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) is a distributed machine learning method where multiple devices collaboratively train a model under the management of a central server without sharing underlying data. One of the key challenges of FL is the communication bottleneck caused by variations in connection speed and bandwidth across devices. Therefore, it is essential to reduce the size of transmitted data during training. Additionally, there is a potential risk of exposing sensitive information through the model or gradient analysis during training. To address both privacy and communication efficiency, we combine differential privacy (DP) and adaptive quantization methods. We use Laplacian-based DP to preserve privacy, which is relatively underexplored in FL and offers tighter privacy guarantees than Gaussian-based DP. We propose a simple and efficient global bit-length scheduler using round-based cosine annealing, along with a client-based scheduler that dynamically adapts based on client contribution estimated through dataset entropy analysis. We evaluate our approach through extensive experiments on CIFAR10, MNIST, and medical imaging datasets, using non-IID data distributions across varying client counts, bit-length schedulers, and privacy budgets. The results show that our adaptive quantization methods reduce total communicated data by up to 52.64% for MNIST, 45.06% for CIFAR10, and 31% to 37% for medical imaging datasets compared to 32-bit float training while maintaining competitive model accuracy and ensuring robust privacy through DP.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信