{"title":"Enhanced Privacy and Communication Efficiency in Non-IID Federated Learning With Adaptive Quantization and Differential Privacy","authors":"Emre Ardıç;Yakup Genç","doi":"10.1109/ACCESS.2025.3554138","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a distributed machine learning method where multiple devices collaboratively train a model under the management of a central server without sharing underlying data. One of the key challenges of FL is the communication bottleneck caused by variations in connection speed and bandwidth across devices. Therefore, it is essential to reduce the size of transmitted data during training. Additionally, there is a potential risk of exposing sensitive information through the model or gradient analysis during training. To address both privacy and communication efficiency, we combine differential privacy (DP) and adaptive quantization methods. We use Laplacian-based DP to preserve privacy, which is relatively underexplored in FL and offers tighter privacy guarantees than Gaussian-based DP. We propose a simple and efficient global bit-length scheduler using round-based cosine annealing, along with a client-based scheduler that dynamically adapts based on client contribution estimated through dataset entropy analysis. We evaluate our approach through extensive experiments on CIFAR10, MNIST, and medical imaging datasets, using non-IID data distributions across varying client counts, bit-length schedulers, and privacy budgets. The results show that our adaptive quantization methods reduce total communicated data by up to 52.64% for MNIST, 45.06% for CIFAR10, and 31% to 37% for medical imaging datasets compared to 32-bit float training while maintaining competitive model accuracy and ensuring robust privacy through DP.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"54322-54337"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10937694/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) is a distributed machine learning method where multiple devices collaboratively train a model under the management of a central server without sharing underlying data. One of the key challenges of FL is the communication bottleneck caused by variations in connection speed and bandwidth across devices. Therefore, it is essential to reduce the size of transmitted data during training. Additionally, there is a potential risk of exposing sensitive information through the model or gradient analysis during training. To address both privacy and communication efficiency, we combine differential privacy (DP) and adaptive quantization methods. We use Laplacian-based DP to preserve privacy, which is relatively underexplored in FL and offers tighter privacy guarantees than Gaussian-based DP. We propose a simple and efficient global bit-length scheduler using round-based cosine annealing, along with a client-based scheduler that dynamically adapts based on client contribution estimated through dataset entropy analysis. We evaluate our approach through extensive experiments on CIFAR10, MNIST, and medical imaging datasets, using non-IID data distributions across varying client counts, bit-length schedulers, and privacy budgets. The results show that our adaptive quantization methods reduce total communicated data by up to 52.64% for MNIST, 45.06% for CIFAR10, and 31% to 37% for medical imaging datasets compared to 32-bit float training while maintaining competitive model accuracy and ensuring robust privacy through DP.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.