Masahiro Matsumoto;Abu Saleh Musa Miah;Nobuyoshi Asai;Jungpil Shin
{"title":"Machine Learning-Based Differential Diagnosis of Parkinson’s Disease Using Kinematic Feature Extraction and Selection","authors":"Masahiro Matsumoto;Abu Saleh Musa Miah;Nobuyoshi Asai;Jungpil Shin","doi":"10.1109/ACCESS.2025.3553528","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is characterized by dopaminergic neuron loss and the accumulation of abnormal synuclein. PD presents both motor and non-motor symptoms that progressively impair daily functioning. The severity of these symptoms is typically assessed using the MDS-UPDRS rating scale, which is subjective and dependent on the physician’s experience. Additionally, PD shares symptoms with other neurodegenerative diseases, such as progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), complicating accurate diagnosis. We propose a machine learning-based system for differential diagnosis of PD, PSP, MSA, and healthy controls (HC) to address these diagnostic challenges. This system utilizes a kinematic feature-based hierarchical feature extraction and selection approach. Initially, 18 kinematic features are extracted, including two newly proposed features: Thumb-to-index vector velocity and acceleration, which provide insights into motor control patterns. In addition, 41 statistical features were extracted here from each kinematic feature, including some new approaches such as Average Absolute Change, Rhythm, Amplitude, Frequency, Standard Deviation of Frequency, and Slope. Feature selection is performed using One-way ANOVA to rank features, followed by Sequential Forward Floating Selection (SFFS) to identify the most relevant ones, aiming to reduce the computational complexity. The final feature set is used for classification, achieving a classification accuracy of 66.67% for each dataset and 88.89% for each patient, with particularly high performance for the MSA and HC groups using the SVM algorithm. This system shows potential as a rapid and accurate diagnostic tool in clinical practice, though further data collection and refinement are needed to enhance its reliability.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"54090-54104"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937116","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10937116/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is characterized by dopaminergic neuron loss and the accumulation of abnormal synuclein. PD presents both motor and non-motor symptoms that progressively impair daily functioning. The severity of these symptoms is typically assessed using the MDS-UPDRS rating scale, which is subjective and dependent on the physician’s experience. Additionally, PD shares symptoms with other neurodegenerative diseases, such as progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), complicating accurate diagnosis. We propose a machine learning-based system for differential diagnosis of PD, PSP, MSA, and healthy controls (HC) to address these diagnostic challenges. This system utilizes a kinematic feature-based hierarchical feature extraction and selection approach. Initially, 18 kinematic features are extracted, including two newly proposed features: Thumb-to-index vector velocity and acceleration, which provide insights into motor control patterns. In addition, 41 statistical features were extracted here from each kinematic feature, including some new approaches such as Average Absolute Change, Rhythm, Amplitude, Frequency, Standard Deviation of Frequency, and Slope. Feature selection is performed using One-way ANOVA to rank features, followed by Sequential Forward Floating Selection (SFFS) to identify the most relevant ones, aiming to reduce the computational complexity. The final feature set is used for classification, achieving a classification accuracy of 66.67% for each dataset and 88.89% for each patient, with particularly high performance for the MSA and HC groups using the SVM algorithm. This system shows potential as a rapid and accurate diagnostic tool in clinical practice, though further data collection and refinement are needed to enhance its reliability.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.