SHPNeXt: A Novel Method of Multi-Scale and Variable Resolution AI-Based Tongue Image Segmentation

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chong-Xiao Peng;Zhi-Jun Gao;Jin-Huan Wang;Xin Yue;Yi Li;Li-Li Sun;Yin-Huan Sun;Fu-Quan Du
{"title":"SHPNeXt: A Novel Method of Multi-Scale and Variable Resolution AI-Based Tongue Image Segmentation","authors":"Chong-Xiao Peng;Zhi-Jun Gao;Jin-Huan Wang;Xin Yue;Yi Li;Li-Li Sun;Yin-Huan Sun;Fu-Quan Du","doi":"10.1109/ACCESS.2025.3554487","DOIUrl":null,"url":null,"abstract":"In the domain of Traditional Chinese Medicine, accurately segmenting tongue images is fundamental for computer-assisted diagnosis. Yet, current models often falter with images of diverse scales and clarity, impeding their widespread application. To address this challenge, we propose SHPNeXt, an innovative network designed to accurately segment tongue images across different scales and resolutions. This model blends PoolFormer and Hire-MLP to adeptly discern both overarching and nuanced details, ensuring accurate segmentation across varying tongue image sizes. Furthermore, SHPNeXt’s precision was further enhanced by integrating a Nuclear-Norm Non-negative Matrix Factorization (NMF) approach, which robustly counters noise in lower quality images. Experiments on three benchmark datasets demonstrate SHPNeXt’s superior performance, achieving mean Intersection over Union (mIoU) scores of 99.64%, 97.05%, and 96.82%. Balancing efficiency and accuracy, SHPNeXt’s architecture comprises 5.984 million parameters and operates at 1.22 GFLOPs, rendering it an exceptionally effective tool for real-world tongue diagnosis in TCM. The code has been released on github: (<uri>https://github.com/Kuanzhaipcx/SHPNeXt.git</uri>).","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"54504-54516"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938541","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938541/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the domain of Traditional Chinese Medicine, accurately segmenting tongue images is fundamental for computer-assisted diagnosis. Yet, current models often falter with images of diverse scales and clarity, impeding their widespread application. To address this challenge, we propose SHPNeXt, an innovative network designed to accurately segment tongue images across different scales and resolutions. This model blends PoolFormer and Hire-MLP to adeptly discern both overarching and nuanced details, ensuring accurate segmentation across varying tongue image sizes. Furthermore, SHPNeXt’s precision was further enhanced by integrating a Nuclear-Norm Non-negative Matrix Factorization (NMF) approach, which robustly counters noise in lower quality images. Experiments on three benchmark datasets demonstrate SHPNeXt’s superior performance, achieving mean Intersection over Union (mIoU) scores of 99.64%, 97.05%, and 96.82%. Balancing efficiency and accuracy, SHPNeXt’s architecture comprises 5.984 million parameters and operates at 1.22 GFLOPs, rendering it an exceptionally effective tool for real-world tongue diagnosis in TCM. The code has been released on github: (https://github.com/Kuanzhaipcx/SHPNeXt.git).
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信