FedAV: Federated learning for cyberattack vulnerability and resilience of cooperative driving automation

IF 12.5 Q1 TRANSPORTATION
Guanyu Lin , Sean Qian , Zulqarnain H. Khattak
{"title":"FedAV: Federated learning for cyberattack vulnerability and resilience of cooperative driving automation","authors":"Guanyu Lin ,&nbsp;Sean Qian ,&nbsp;Zulqarnain H. Khattak","doi":"10.1016/j.commtr.2025.100175","DOIUrl":null,"url":null,"abstract":"<div><div>Cooperative driving automation (CDA) has gained attention over the years because of its cooperative driving capability that provides solution to individual automated driving challenges. Although reliance on communication and automation enables cooperative driving, it also introduces new cybersecurity threats. This study introduces a federated learning concept for autonomous and connected vehicles, known as the federated agents on vehicle platooning (FedAV) framework, which is designed to address the challenges of cyberattack simulations and anomaly detection in cooperative vehicle platooning systems. The federated learning approach was adopted because of its decentralized nature, which allows each vehicle to learn independently with the ability to overcome adversarial attacks. First, FedAV employs a mixed cyberattack simulation approach to capture complex attack patterns effectively. We tested the scalability of our approach against several attacks, including spoofing, message falsification, and replay attacks, as well as on anomalies, including short anomalies, noise anomalies, bias anomalies, and gradual shifts. In addition, our approach integrates federated learning for decentralized anomaly detection, ensuring data privacy and reducing communication overhead. The anomaly detection performance was enhanced by average and weighted aggregation strategies. Real-world scenarios from cooperative driving experiments and simulations validated the framework's effectiveness and demonstrated its potential to improve the safety, privacy, and efficiency of CDA.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100175"},"PeriodicalIF":12.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Cooperative driving automation (CDA) has gained attention over the years because of its cooperative driving capability that provides solution to individual automated driving challenges. Although reliance on communication and automation enables cooperative driving, it also introduces new cybersecurity threats. This study introduces a federated learning concept for autonomous and connected vehicles, known as the federated agents on vehicle platooning (FedAV) framework, which is designed to address the challenges of cyberattack simulations and anomaly detection in cooperative vehicle platooning systems. The federated learning approach was adopted because of its decentralized nature, which allows each vehicle to learn independently with the ability to overcome adversarial attacks. First, FedAV employs a mixed cyberattack simulation approach to capture complex attack patterns effectively. We tested the scalability of our approach against several attacks, including spoofing, message falsification, and replay attacks, as well as on anomalies, including short anomalies, noise anomalies, bias anomalies, and gradual shifts. In addition, our approach integrates federated learning for decentralized anomaly detection, ensuring data privacy and reducing communication overhead. The anomaly detection performance was enhanced by average and weighted aggregation strategies. Real-world scenarios from cooperative driving experiments and simulations validated the framework's effectiveness and demonstrated its potential to improve the safety, privacy, and efficiency of CDA.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信