Sustainable operational strategies for mixed fleets: Integrating autonomous and human-driven taxis with heterogeneous energy types

IF 12.5 Q1 TRANSPORTATION
Qinru Hu , Beinuo Yang , Keyang Zhang , Jose Escribano Macias , Xiqun (Michael) Chen , Yanfeng Ouyang , Simon Hu
{"title":"Sustainable operational strategies for mixed fleets: Integrating autonomous and human-driven taxis with heterogeneous energy types","authors":"Qinru Hu ,&nbsp;Beinuo Yang ,&nbsp;Keyang Zhang ,&nbsp;Jose Escribano Macias ,&nbsp;Xiqun (Michael) Chen ,&nbsp;Yanfeng Ouyang ,&nbsp;Simon Hu","doi":"10.1016/j.commtr.2025.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Taxi systems are transitioning into a complex integration of autonomous and human-driven vehicles powered by heterogeneous energy sources. Traditional operational strategies designed for homogeneous fleets fail to capture the unique dynamics and interactions present in mixed fleets. To address this gap, this study proposes a comprehensive modeling and simulation framework for the dynamic operation of mixed taxi fleets, including autonomous electric taxis (AETs), human-driven electric taxis, and human-driven gasoline taxis. The framework integrates centralized and decentralized control mechanisms to address the distinct characteristics of each taxi type. An integer linear programming model is developed to optimize taxi assignment and scheduling, with the objective of maximizing system profits by accounting for customer service revenues and energy and travel costs. An agent-based simulation platform is designed to model dynamic interactions among taxis, customers, and charging stations, offering continuous feedback on system performance. Real-world case studies reveal significant environmental, economic, and social benefits when incorporating operating costs into decision-making. Impact analyses demonstrate the competitiveness of AETs in passenger service due to lower operating costs and enhanced environmental efficiency, with reduced carbon emission intensity per kilometer and per request. This study provides valuable insights for taxi platforms and policymakers in formulating strategies that promote sustainable urban mobility during the ongoing transition period.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100171"},"PeriodicalIF":12.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Taxi systems are transitioning into a complex integration of autonomous and human-driven vehicles powered by heterogeneous energy sources. Traditional operational strategies designed for homogeneous fleets fail to capture the unique dynamics and interactions present in mixed fleets. To address this gap, this study proposes a comprehensive modeling and simulation framework for the dynamic operation of mixed taxi fleets, including autonomous electric taxis (AETs), human-driven electric taxis, and human-driven gasoline taxis. The framework integrates centralized and decentralized control mechanisms to address the distinct characteristics of each taxi type. An integer linear programming model is developed to optimize taxi assignment and scheduling, with the objective of maximizing system profits by accounting for customer service revenues and energy and travel costs. An agent-based simulation platform is designed to model dynamic interactions among taxis, customers, and charging stations, offering continuous feedback on system performance. Real-world case studies reveal significant environmental, economic, and social benefits when incorporating operating costs into decision-making. Impact analyses demonstrate the competitiveness of AETs in passenger service due to lower operating costs and enhanced environmental efficiency, with reduced carbon emission intensity per kilometer and per request. This study provides valuable insights for taxi platforms and policymakers in formulating strategies that promote sustainable urban mobility during the ongoing transition period.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信