{"title":"Frequency bounds for edges and paths in optimal Hamiltonian cycle based on frequency Kis","authors":"Yong Wang, Pengbo Liu, Yanlong He","doi":"10.1016/j.eswa.2025.127264","DOIUrl":null,"url":null,"abstract":"<div><div>Traveling salesman problem (<span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>) is extensively studied in operations research and computer science. In general, the distances of edges are not helpful for finding edges and paths in optimal Hamiltonian cycle (<span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span>). The frequency bounds for edges and paths in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> are studied based on frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>s (<span><math><mrow><mn>4</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></mrow></math></span>) in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. A frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is computed with the optimal <span><math><mi>i</mi></math></span>-vertex paths with given endpoints (optimal <span><math><mi>i</mi></math></span>-vertex path for short) in one corresponding <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In this paper, the lower frequency bounds for <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges and paths in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are improved under the constrains of optimal <span><math><mi>i</mi></math></span>-vertex paths in frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> where <span><math><mrow><mi>i</mi><mo>≥</mo><mn>5</mn></mrow></math></span>. As the frequency of an edge is computed with frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>s under the constraints of optimal 5-vertex paths, the lower frequency bound for <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges is improved from 5 to <span><math><mfrac><mrow><mn>131</mn></mrow><mrow><mn>20</mn></mrow></mfrac></math></span> for small <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>. For 3-vertex, 4-vertex, and 5-vertex paths in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span>, the lower frequency bounds are derived as <span><math><mfrac><mrow><mn>187</mn></mrow><mrow><mn>15</mn></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mn>187</mn></mrow><mrow><mn>10</mn></mrow></mfrac></math></span>, and <span><math><mfrac><mrow><mn>131</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, respectively. For a <span><math><mi>k</mi></math></span>-edge path in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> if <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn><mi>d</mi></mrow></math></span> where <span><math><mi>d</mi></math></span> is a small number, the lower frequency bound is <span><math><mrow><mn>7</mn><mi>k</mi></mrow></math></span>. For big <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>, the lower frequency bound for a <span><math><mi>k</mi></math></span>-edge path in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> is <span><math><mrow><mn>7</mn><mi>k</mi></mrow></math></span> where <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></mrow></mrow></math></span>. In addition, the average frequency of all <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges is bigger than 7 for small <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>, and 7.5 for big <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>. If the frequency of an edge is computed with frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>s containing more vertices, the frequency bounds for <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges and paths are approximated. As these frequency bounds are taken as threshold to eliminate ordinary edges and paths excluding from <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span>, the number of preserved solutions is not bigger than 1 unless <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>!</mo><mo>≤</mo><mn>2</mn><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> exists where <span><math><mi>e</mi></math></span> is the base of natural logarithm. The experiments are implemented with <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span> instances to verify the findings.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"278 ","pages":"Article 127264"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425008863","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Traveling salesman problem () is extensively studied in operations research and computer science. In general, the distances of edges are not helpful for finding edges and paths in optimal Hamiltonian cycle (). The frequency bounds for edges and paths in are studied based on frequency s () in . A frequency is computed with the optimal -vertex paths with given endpoints (optimal -vertex path for short) in one corresponding in . In this paper, the lower frequency bounds for edges and paths in are improved under the constrains of optimal -vertex paths in frequency where . As the frequency of an edge is computed with frequency s under the constraints of optimal 5-vertex paths, the lower frequency bound for edges is improved from 5 to for small . For 3-vertex, 4-vertex, and 5-vertex paths in , the lower frequency bounds are derived as , , and , respectively. For a -edge path in if where is a small number, the lower frequency bound is . For big , the lower frequency bound for a -edge path in is where . In addition, the average frequency of all edges is bigger than 7 for small , and 7.5 for big . If the frequency of an edge is computed with frequency s containing more vertices, the frequency bounds for edges and paths are approximated. As these frequency bounds are taken as threshold to eliminate ordinary edges and paths excluding from , the number of preserved solutions is not bigger than 1 unless exists where is the base of natural logarithm. The experiments are implemented with instances to verify the findings.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.