Frequency bounds for edges and paths in optimal Hamiltonian cycle based on frequency Kis

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yong Wang, Pengbo Liu, Yanlong He
{"title":"Frequency bounds for edges and paths in optimal Hamiltonian cycle based on frequency Kis","authors":"Yong Wang,&nbsp;Pengbo Liu,&nbsp;Yanlong He","doi":"10.1016/j.eswa.2025.127264","DOIUrl":null,"url":null,"abstract":"<div><div>Traveling salesman problem (<span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>) is extensively studied in operations research and computer science. In general, the distances of edges are not helpful for finding edges and paths in optimal Hamiltonian cycle (<span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span>). The frequency bounds for edges and paths in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> are studied based on frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>s (<span><math><mrow><mn>4</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></mrow></math></span>) in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. A frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is computed with the optimal <span><math><mi>i</mi></math></span>-vertex paths with given endpoints (optimal <span><math><mi>i</mi></math></span>-vertex path for short) in one corresponding <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In this paper, the lower frequency bounds for <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges and paths in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are improved under the constrains of optimal <span><math><mi>i</mi></math></span>-vertex paths in frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> where <span><math><mrow><mi>i</mi><mo>≥</mo><mn>5</mn></mrow></math></span>. As the frequency of an edge is computed with frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>s under the constraints of optimal 5-vertex paths, the lower frequency bound for <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges is improved from 5 to <span><math><mfrac><mrow><mn>131</mn></mrow><mrow><mn>20</mn></mrow></mfrac></math></span> for small <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>. For 3-vertex, 4-vertex, and 5-vertex paths in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span>, the lower frequency bounds are derived as <span><math><mfrac><mrow><mn>187</mn></mrow><mrow><mn>15</mn></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mn>187</mn></mrow><mrow><mn>10</mn></mrow></mfrac></math></span>, and <span><math><mfrac><mrow><mn>131</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, respectively. For a <span><math><mi>k</mi></math></span>-edge path in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> if <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn><mi>d</mi></mrow></math></span> where <span><math><mi>d</mi></math></span> is a small number, the lower frequency bound is <span><math><mrow><mn>7</mn><mi>k</mi></mrow></math></span>. For big <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>, the lower frequency bound for a <span><math><mi>k</mi></math></span>-edge path in <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> is <span><math><mrow><mn>7</mn><mi>k</mi></mrow></math></span> where <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></mrow></mrow></math></span>. In addition, the average frequency of all <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges is bigger than 7 for small <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>, and 7.5 for big <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>. If the frequency of an edge is computed with frequency <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>s containing more vertices, the frequency bounds for <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span> edges and paths are approximated. As these frequency bounds are taken as threshold to eliminate ordinary edges and paths excluding from <span><math><mrow><mi>O</mi><mi>H</mi><mi>C</mi></mrow></math></span>, the number of preserved solutions is not bigger than 1 unless <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>!</mo><mo>≤</mo><mn>2</mn><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> exists where <span><math><mi>e</mi></math></span> is the base of natural logarithm. The experiments are implemented with <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span> instances to verify the findings.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"278 ","pages":"Article 127264"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425008863","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traveling salesman problem (TSP) is extensively studied in operations research and computer science. In general, the distances of edges are not helpful for finding edges and paths in optimal Hamiltonian cycle (OHC). The frequency bounds for edges and paths in OHC are studied based on frequency Kis (4in) in Kn. A frequency Ki is computed with the optimal i-vertex paths with given endpoints (optimal i-vertex path for short) in one corresponding Ki in Kn. In this paper, the lower frequency bounds for OHC edges and paths in Kn are improved under the constrains of optimal i-vertex paths in frequency Ki where i5. As the frequency of an edge is computed with frequency K5s under the constraints of optimal 5-vertex paths, the lower frequency bound for OHC edges is improved from 5 to 13120 for small TSP. For 3-vertex, 4-vertex, and 5-vertex paths in OHC, the lower frequency bounds are derived as 18715, 18710, and 1315, respectively. For a k-edge path in OHC if k5d where d is a small number, the lower frequency bound is 7k. For big TSP, the lower frequency bound for a k-edge path in OHC is 7k where k[1,n]. In addition, the average frequency of all OHC edges is bigger than 7 for small TSP, and 7.5 for big TSP. If the frequency of an edge is computed with frequency Kis containing more vertices, the frequency bounds for OHC edges and paths are approximated. As these frequency bounds are taken as threshold to eliminate ordinary edges and paths excluding from OHC, the number of preserved solutions is not bigger than 1 unless e(i1)!2(n1) exists where e is the base of natural logarithm. The experiments are implemented with TSP instances to verify the findings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信