{"title":"Evaluating a large language model's accuracy in chest X-ray interpretation for acute thoracic conditions","authors":"Adam M. Ostrovsky","doi":"10.1016/j.ajem.2025.03.060","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The rapid advancement of artificial intelligence (AI) has great ability to impact healthcare. Chest X-rays are essential for diagnosing acute thoracic conditions in the emergency department (ED), but interpretation delays due to radiologist availability can impact clinical decision-making. AI models, including deep learning algorithms, have been explored for diagnostic support, but the potential of large language models (LLMs) in emergency radiology remains largely unexamined.</div></div><div><h3>Methods</h3><div>This study assessed ChatGPT's feasibility in interpreting chest X-rays for acute thoracic conditions commonly encountered in the ED. A subset of 1400 images from the NIH Chest X-ray dataset was analyzed, representing seven pathology categories: Atelectasis, Effusion, Emphysema, Pneumothorax, Pneumonia, Mass, and No Finding. ChatGPT 4.0, utilizing the “X-Ray Interpreter” add-on, was evaluated for its diagnostic performance across these categories.</div></div><div><h3>Results</h3><div>ChatGPT demonstrated high performance in identifying normal chest X-rays, with a sensitivity of 98.9 %, specificity of 93.9 %, and accuracy of 94.7 %. However, the model's performance varied across pathologies. The best results were observed in diagnosing pneumonia (sensitivity 76.2 %, specificity 93.7 %) and pneumothorax (sensitivity 77.4 %, specificity 89.1 %), while performance for atelectasis and emphysema was lower.</div></div><div><h3>Conclusion</h3><div>ChatGPT demonstrates potential as a supplementary tool for differentiating normal from abnormal chest X-rays, with promising results for certain pathologies like pneumonia. However, its diagnostic accuracy for more subtle conditions requires improvement. Further research integrating ChatGPT with specialized image recognition models could enhance its performance, offering new possibilities in medical imaging and education.</div></div>","PeriodicalId":55536,"journal":{"name":"American Journal of Emergency Medicine","volume":"93 ","pages":"Pages 99-102"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Emergency Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735675725002256","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The rapid advancement of artificial intelligence (AI) has great ability to impact healthcare. Chest X-rays are essential for diagnosing acute thoracic conditions in the emergency department (ED), but interpretation delays due to radiologist availability can impact clinical decision-making. AI models, including deep learning algorithms, have been explored for diagnostic support, but the potential of large language models (LLMs) in emergency radiology remains largely unexamined.
Methods
This study assessed ChatGPT's feasibility in interpreting chest X-rays for acute thoracic conditions commonly encountered in the ED. A subset of 1400 images from the NIH Chest X-ray dataset was analyzed, representing seven pathology categories: Atelectasis, Effusion, Emphysema, Pneumothorax, Pneumonia, Mass, and No Finding. ChatGPT 4.0, utilizing the “X-Ray Interpreter” add-on, was evaluated for its diagnostic performance across these categories.
Results
ChatGPT demonstrated high performance in identifying normal chest X-rays, with a sensitivity of 98.9 %, specificity of 93.9 %, and accuracy of 94.7 %. However, the model's performance varied across pathologies. The best results were observed in diagnosing pneumonia (sensitivity 76.2 %, specificity 93.7 %) and pneumothorax (sensitivity 77.4 %, specificity 89.1 %), while performance for atelectasis and emphysema was lower.
Conclusion
ChatGPT demonstrates potential as a supplementary tool for differentiating normal from abnormal chest X-rays, with promising results for certain pathologies like pneumonia. However, its diagnostic accuracy for more subtle conditions requires improvement. Further research integrating ChatGPT with specialized image recognition models could enhance its performance, offering new possibilities in medical imaging and education.
期刊介绍:
A distinctive blend of practicality and scholarliness makes the American Journal of Emergency Medicine a key source for information on emergency medical care. Covering all activities concerned with emergency medicine, it is the journal to turn to for information to help increase the ability to understand, recognize and treat emergency conditions. Issues contain clinical articles, case reports, review articles, editorials, international notes, book reviews and more.