Evidence-based artificial intelligence: Implementing retrieval-augmented generation models to enhance clinical decision support in plastic surgery

IF 2 3区 医学 Q2 SURGERY
Berk B. Ozmen , Piyush Mathur
{"title":"Evidence-based artificial intelligence: Implementing retrieval-augmented generation models to enhance clinical decision support in plastic surgery","authors":"Berk B. Ozmen ,&nbsp;Piyush Mathur","doi":"10.1016/j.bjps.2025.03.053","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of large language models (LLMs) has generated significant enthusiasm within healthcare, especially in supporting clinical decision-making and patient management. However, inherent limitations including hallucinations, outdated clinical context, and unreliable references pose serious concerns for their clinical utility. Retrieval-Augmented Generation (RAG) models address these limitations by integrating validated, curated medical literature directly into AI workflows, significantly enhancing the accuracy, relevance, and transparency of generated outputs. This viewpoint discusses how RAG frameworks can specifically benefit plastic and reconstructive surgery by providing contextually accurate, evidence-based, and clinically grounded support for decision-making. Potential clinical applications include clinical decision support, efficient evidence synthesis, customizable patient education, informed consent materials, multilingual capabilities, and structured surgical documentation. By querying specialized databases that incorporate contemporary guidelines and literature, RAG models can markedly reduce inaccuracies and increase the reliability of AI-generated responses. However, the implementation of RAG technology demands rigorous database curation, regular updating with guidelines from surgical societies, and ongoing validation to maintain clinical relevance. Addressing challenges related to data privacy, governance, ethical considerations, and user training remains critical for successful clinical adoption. In conclusion, RAG models represent a significant advancement in overcoming traditional LLM limitations, promoting transparency and clinical accuracy with great potential for plastic surgery. Plastic surgeons and researchers are encouraged to explore and integrate these innovative generative AI frameworks to enhance patient care, surgical outcomes, communication, documentation quality, and education.</div></div>","PeriodicalId":50084,"journal":{"name":"Journal of Plastic Reconstructive and Aesthetic Surgery","volume":"104 ","pages":"Pages 414-416"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Reconstructive and Aesthetic Surgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748681525002256","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of large language models (LLMs) has generated significant enthusiasm within healthcare, especially in supporting clinical decision-making and patient management. However, inherent limitations including hallucinations, outdated clinical context, and unreliable references pose serious concerns for their clinical utility. Retrieval-Augmented Generation (RAG) models address these limitations by integrating validated, curated medical literature directly into AI workflows, significantly enhancing the accuracy, relevance, and transparency of generated outputs. This viewpoint discusses how RAG frameworks can specifically benefit plastic and reconstructive surgery by providing contextually accurate, evidence-based, and clinically grounded support for decision-making. Potential clinical applications include clinical decision support, efficient evidence synthesis, customizable patient education, informed consent materials, multilingual capabilities, and structured surgical documentation. By querying specialized databases that incorporate contemporary guidelines and literature, RAG models can markedly reduce inaccuracies and increase the reliability of AI-generated responses. However, the implementation of RAG technology demands rigorous database curation, regular updating with guidelines from surgical societies, and ongoing validation to maintain clinical relevance. Addressing challenges related to data privacy, governance, ethical considerations, and user training remains critical for successful clinical adoption. In conclusion, RAG models represent a significant advancement in overcoming traditional LLM limitations, promoting transparency and clinical accuracy with great potential for plastic surgery. Plastic surgeons and researchers are encouraged to explore and integrate these innovative generative AI frameworks to enhance patient care, surgical outcomes, communication, documentation quality, and education.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
11.10%
发文量
578
审稿时长
3.5 months
期刊介绍: JPRAS An International Journal of Surgical Reconstruction is one of the world''s leading international journals, covering all the reconstructive and aesthetic aspects of plastic surgery. The journal presents the latest surgical procedures with audit and outcome studies of new and established techniques in plastic surgery including: cleft lip and palate and other heads and neck surgery, hand surgery, lower limb trauma, burns, skin cancer, breast surgery and aesthetic surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信