A novel hybrid feature fusion approach using handcrafted features with transfer learning model for enhanced skin cancer classification

IF 7 2区 医学 Q1 BIOLOGY
B. Soundarya, C. Poongodi
{"title":"A novel hybrid feature fusion approach using handcrafted features with transfer learning model for enhanced skin cancer classification","authors":"B. Soundarya,&nbsp;C. Poongodi","doi":"10.1016/j.compbiomed.2025.110104","DOIUrl":null,"url":null,"abstract":"<div><div>Skin cancer is a deadly disease and has the highest rising rates globally. It arises from aberrant skin cells, which are often caused by prolonged exposure to ultraviolet rays from sunlight or artificial tanning devices. Dermatologists rely on visual inspection and need to identify suspicious lesions. Prompt and accurate diagnosis is pivotal for effective treatment and enhancing the chances of recovery. Recently, skin cancer prediction has been made utilising machine and deep learning algorithms for early detection. This methodology presents a novel hybrid feature extraction and is fused with a deep learning model for dermoscopic image analysis. Skin lesion images from sources like ISIC were pre-processed. Features were extracted using the Grey-Level Co-Occurrence Matrix (GLCM), Redundant Discrete Wavelet Transform (RDWT) and a various pre-trained model. After evaluating all the combinations, the proposed feature fusion model performed well rather than all other models. This proposed feature fusion model includes GLCM, RDWT, and DenseNet121 features, which were estimated with the various classifiers, among which an impressive accuracy of 93.46 % was obtained with the XGBoost classifier and 94.25 % with the ensemble classifier. This study underscores the efficacy of integrating diverse feature extraction techniques to increase the reliability and effectiveness of skin cancer diagnosis.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":"Article 110104"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001048252500455X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer is a deadly disease and has the highest rising rates globally. It arises from aberrant skin cells, which are often caused by prolonged exposure to ultraviolet rays from sunlight or artificial tanning devices. Dermatologists rely on visual inspection and need to identify suspicious lesions. Prompt and accurate diagnosis is pivotal for effective treatment and enhancing the chances of recovery. Recently, skin cancer prediction has been made utilising machine and deep learning algorithms for early detection. This methodology presents a novel hybrid feature extraction and is fused with a deep learning model for dermoscopic image analysis. Skin lesion images from sources like ISIC were pre-processed. Features were extracted using the Grey-Level Co-Occurrence Matrix (GLCM), Redundant Discrete Wavelet Transform (RDWT) and a various pre-trained model. After evaluating all the combinations, the proposed feature fusion model performed well rather than all other models. This proposed feature fusion model includes GLCM, RDWT, and DenseNet121 features, which were estimated with the various classifiers, among which an impressive accuracy of 93.46 % was obtained with the XGBoost classifier and 94.25 % with the ensemble classifier. This study underscores the efficacy of integrating diverse feature extraction techniques to increase the reliability and effectiveness of skin cancer diagnosis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信