Winter wheat plant density determination: Robust predictions across varied agronomic conditions using multiscale RGB imaging

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Jara Jauregui-Besó , Adrian Gracia-Romero , Constanza S. Carrera , Marta da Silva Lopes , José Luis Araus , Shawn Carlisle Kefauver
{"title":"Winter wheat plant density determination: Robust predictions across varied agronomic conditions using multiscale RGB imaging","authors":"Jara Jauregui-Besó ,&nbsp;Adrian Gracia-Romero ,&nbsp;Constanza S. Carrera ,&nbsp;Marta da Silva Lopes ,&nbsp;José Luis Araus ,&nbsp;Shawn Carlisle Kefauver","doi":"10.1016/j.atech.2025.100921","DOIUrl":null,"url":null,"abstract":"<div><div>Cereal plant density is a crucial agronomic factor affecting resource management and yield. This study automated wheat density estimation using multiscale imaging from ground and Unmanned Aerial Vehicles (UAV) at 15, 30, and 50m Conducted over two agronomic seasons (2022 and 2023) with different water profiles, it analyzed three wheat genotypes (cv. Bologna, Hondia, and Marcopolo) sown at five densities ranging from 35 to 560 seeds m<sup>-2</sup>. Images collected through RGB sensors across Haun's developmental stages 2.6 – 12.2 provided data for calculating 15 Vegetation Indexes (VIs), which, along with their Principal Components (PCs), were used as inputs for Ridge and Principal Component Regression (PCR) models. Training was conducted on the 2022 datasets using 4-fold, 10-repeated cross-validation to determine the most predictive growth stages, with Haun stages 5.3 to 7.3 yielding the best results, irrespective of resolution. Testing on 2023 datasets showed that Ridge models consistently outperformed PCR, especially for medium to high-density ranges (140–560 seeds m<sup>-2</sup>), though they underperformed at lower densities, leading to their exclusion from the testing data. The top-performing Ridge model, trained on Haun stages 7.1–7.3 at 50 m (1.18 cm pixel-1), achieved Mean Absolute Percentage Error (MAPE) 17.91% – 28.54% (0.9 – 0.68 R<sup>2</sup>) values across various test sets, with stable performance throughout resolutions and stages (4.4 – 4.8). These findings show robust prediction capabilities across a broader developmental range and from the lowest resolution recorded, especially when vegetation coverage is abundant. The study highlights the practicality of high-throughput RGB imaging for scalable, flexible and affordable plant density estimation.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100921"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525001546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Cereal plant density is a crucial agronomic factor affecting resource management and yield. This study automated wheat density estimation using multiscale imaging from ground and Unmanned Aerial Vehicles (UAV) at 15, 30, and 50m Conducted over two agronomic seasons (2022 and 2023) with different water profiles, it analyzed three wheat genotypes (cv. Bologna, Hondia, and Marcopolo) sown at five densities ranging from 35 to 560 seeds m-2. Images collected through RGB sensors across Haun's developmental stages 2.6 – 12.2 provided data for calculating 15 Vegetation Indexes (VIs), which, along with their Principal Components (PCs), were used as inputs for Ridge and Principal Component Regression (PCR) models. Training was conducted on the 2022 datasets using 4-fold, 10-repeated cross-validation to determine the most predictive growth stages, with Haun stages 5.3 to 7.3 yielding the best results, irrespective of resolution. Testing on 2023 datasets showed that Ridge models consistently outperformed PCR, especially for medium to high-density ranges (140–560 seeds m-2), though they underperformed at lower densities, leading to their exclusion from the testing data. The top-performing Ridge model, trained on Haun stages 7.1–7.3 at 50 m (1.18 cm pixel-1), achieved Mean Absolute Percentage Error (MAPE) 17.91% – 28.54% (0.9 – 0.68 R2) values across various test sets, with stable performance throughout resolutions and stages (4.4 – 4.8). These findings show robust prediction capabilities across a broader developmental range and from the lowest resolution recorded, especially when vegetation coverage is abundant. The study highlights the practicality of high-throughput RGB imaging for scalable, flexible and affordable plant density estimation.
冬小麦植株密度测定:使用多尺度RGB成像在不同农艺条件下的稳健预测
谷物种植密度是影响资源管理和产量的重要农艺因素。本研究利用15、30和50米处地面和无人机(UAV)的多尺度成像技术自动估算小麦密度。在两个农作季节(2022年和2023年)不同的水分剖面下,分析了三种小麦基因型(cv。博洛尼亚(Bologna), Hondia和Marcopolo),播种密度为35至560粒m-2。通过RGB传感器在Haun发育2.6 - 12.2阶段收集的图像为计算15个植被指数(VIs)提供了数据,这些指数及其主成分(pc)被用作Ridge和主成分回归(PCR)模型的输入。对2022个数据集进行了4倍、10次重复的交叉验证,以确定最具预测性的生长阶段,无论分辨率如何,Haun阶段5.3至7.3的结果最好。在2023个数据集上的测试表明,Ridge模型的表现始终优于PCR,特别是在中等到高密度范围(140-560个种子m-2),尽管它们在较低密度下表现不佳,导致它们被排除在测试数据之外。在50 m (1.18 cm像素-1)的Haun阶段7.1-7.3上训练的表现最好的Ridge模型,在不同的测试集中获得了17.91% - 28.54% (0.9 - 0.68 R2)的平均绝对百分比误差(MAPE),在分辨率和阶段(4.4 - 4.8)中表现稳定。这些发现显示了在更广泛的发育范围内和从最低分辨率记录的可靠预测能力,特别是在植被覆盖丰富的情况下。该研究强调了高通量RGB成像用于可扩展、灵活和负担得起的植物密度估计的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信