DALL-M: Context-aware clinical data augmentation with large language models

IF 7 2区 医学 Q1 BIOLOGY
Chihcheng Hsieh , Catarina Moreira , Isabel Blanco Nobre , Sandra Costa Sousa , Chun Ouyang , Margot Brereton , Joaquim Jorge , Jacinto C. Nascimento
{"title":"DALL-M: Context-aware clinical data augmentation with large language models","authors":"Chihcheng Hsieh ,&nbsp;Catarina Moreira ,&nbsp;Isabel Blanco Nobre ,&nbsp;Sandra Costa Sousa ,&nbsp;Chun Ouyang ,&nbsp;Margot Brereton ,&nbsp;Joaquim Jorge ,&nbsp;Jacinto C. Nascimento","doi":"10.1016/j.compbiomed.2025.110022","DOIUrl":null,"url":null,"abstract":"<div><div>X-ray images are vital in medical diagnostics, but their effectiveness is limited without clinical context. Radiologists often find chest X-rays insufficient for diagnosing underlying diseases, necessitating the integration of structured clinical features with radiology reports.</div><div>To address this, we introduce DALL-M, a novel framework that enhances clinical datasets by generating contextual synthetic data. DALL-M augments structured patient data, including vital signs (e.g., heart rate, oxygen saturation), radiology findings (e.g., lesion presence), and demographic factors. It integrates this tabular data with contextual knowledge extracted from radiology reports and domain-specific resources (e.g., Radiopaedia, Wikipedia), ensuring clinical consistency and reliability.</div><div>DALL-M follows a three-phase process: (i) clinical context storage, (ii) expert query generation, and (iii) context-aware feature augmentation. Using large language models (LLMs), it generates both contextual synthetic values for existing clinical features and entirely new, clinically relevant features.</div><div>Applied to 799 cases from the MIMIC-IV dataset, DALL-M expanded the original 9 clinical features to 91. Empirical validation with machine learning models – including Decision Trees, Random Forests, XGBoost, and TabNET – demonstrated a 16.5% improvement in F1 score and a 25% increase in Precision and Recall.</div><div>DALL-M bridges an important gap in clinical data augmentation by preserving data integrity while enhancing predictive modeling in healthcare. Our results show that integrating LLM-generated synthetic features significantly improves model performance, making DALL-M a scalable and practical approach for AI-driven medical diagnostics.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":"Article 110022"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525003737","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray images are vital in medical diagnostics, but their effectiveness is limited without clinical context. Radiologists often find chest X-rays insufficient for diagnosing underlying diseases, necessitating the integration of structured clinical features with radiology reports.
To address this, we introduce DALL-M, a novel framework that enhances clinical datasets by generating contextual synthetic data. DALL-M augments structured patient data, including vital signs (e.g., heart rate, oxygen saturation), radiology findings (e.g., lesion presence), and demographic factors. It integrates this tabular data with contextual knowledge extracted from radiology reports and domain-specific resources (e.g., Radiopaedia, Wikipedia), ensuring clinical consistency and reliability.
DALL-M follows a three-phase process: (i) clinical context storage, (ii) expert query generation, and (iii) context-aware feature augmentation. Using large language models (LLMs), it generates both contextual synthetic values for existing clinical features and entirely new, clinically relevant features.
Applied to 799 cases from the MIMIC-IV dataset, DALL-M expanded the original 9 clinical features to 91. Empirical validation with machine learning models – including Decision Trees, Random Forests, XGBoost, and TabNET – demonstrated a 16.5% improvement in F1 score and a 25% increase in Precision and Recall.
DALL-M bridges an important gap in clinical data augmentation by preserving data integrity while enhancing predictive modeling in healthcare. Our results show that integrating LLM-generated synthetic features significantly improves model performance, making DALL-M a scalable and practical approach for AI-driven medical diagnostics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信