{"title":"A decision transformer approach to grain boundary network optimization","authors":"Christopher W. Adair, Oliver K. Johnson","doi":"10.1016/j.commatsci.2025.113852","DOIUrl":null,"url":null,"abstract":"<div><div>As microstructure property models improve, additional information from crystallographic degrees of freedom and grain boundary networks (GBNs) can be included in microstructure design problems. However, the high-dimensional nature of including this information precludes the use of many common optimization approaches and requires less efficient methods to generate quality designs. Previous work demonstrated that human-in-the-loop optimization, instantiated as a video game, achieved high-quality, efficient solutions to these design problems. However, such data is expensive to obtain. In the present work, we show how a Decision Transformer machine learning (ML) model can be used to learn from the optimization trajectories generated by human players, and subsequently solve materials design problems. We compare the ML optimization trajectories against players and a common global optimization algorithm: simulated annealing (SA). We find that the ML model exhibits a validation accuracy of 84% against player decisions, and achieves solutions of comparable quality to SA (92%), but does so using three orders of magnitude fewer iterations. We find that the ML model generalizes in important and surprising ways, including the ability to train using a simple constitutive structure–property model and then solve microstructure design problems for a different, higher-fidelity, constitutive structure–property model without any retraining. These results demonstrate the potential of Decision Transformer models for the solution of materials design problems.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113852"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001958","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As microstructure property models improve, additional information from crystallographic degrees of freedom and grain boundary networks (GBNs) can be included in microstructure design problems. However, the high-dimensional nature of including this information precludes the use of many common optimization approaches and requires less efficient methods to generate quality designs. Previous work demonstrated that human-in-the-loop optimization, instantiated as a video game, achieved high-quality, efficient solutions to these design problems. However, such data is expensive to obtain. In the present work, we show how a Decision Transformer machine learning (ML) model can be used to learn from the optimization trajectories generated by human players, and subsequently solve materials design problems. We compare the ML optimization trajectories against players and a common global optimization algorithm: simulated annealing (SA). We find that the ML model exhibits a validation accuracy of 84% against player decisions, and achieves solutions of comparable quality to SA (92%), but does so using three orders of magnitude fewer iterations. We find that the ML model generalizes in important and surprising ways, including the ability to train using a simple constitutive structure–property model and then solve microstructure design problems for a different, higher-fidelity, constitutive structure–property model without any retraining. These results demonstrate the potential of Decision Transformer models for the solution of materials design problems.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.