Atomistic molecular dynamics simulations of the tensile strength properties of polymer-calcite systems

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Keat Yung Hue , Daniela Andrade Damasceno , Myo Thant Maung Maung , Paul F. Luckham , Omar K. Matar , Erich A. Müller
{"title":"Atomistic molecular dynamics simulations of the tensile strength properties of polymer-calcite systems","authors":"Keat Yung Hue ,&nbsp;Daniela Andrade Damasceno ,&nbsp;Myo Thant Maung Maung ,&nbsp;Paul F. Luckham ,&nbsp;Omar K. Matar ,&nbsp;Erich A. Müller","doi":"10.1016/j.commatsci.2025.113866","DOIUrl":null,"url":null,"abstract":"<div><div>The production of solids can occur in poorly consolidated carbonate rock reservoirs, leading to equipment damage and environmental waste. This issue can be mitigated by injecting formation-strengthening chemicals, and the performance of these chemicals can be assessed in terms of their tensile strength and interfacial interaction with calcite, the main component of carbonate formations. This study aims to investigate the tensile deformation behaviour of polymer-calcite systems. Classical atomistic molecular dynamics (MD) simulations are utilised to model the interaction of polyacrylamide-based polymer additives, including pure polyacrylamide (PAM), hydrolysed polyacrylamide (HPAM), and sulfonated polyacrylamide (SPAM) with a calcite (1 0 4) structure. Uniaxial tensile simulations demonstrate that the interfacial strength of the polymer-calcite system is significantly stronger than the corresponding bulk polymer strength, resulting in strong polymer adhesion at the calcite surface during deformation. HPAM exhibits high bulk polymer and interfacial strength, presumably due to the presence of the acrylate monomer in ionised form, making it an excellent formation-strengthening agent.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113866"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002095","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The production of solids can occur in poorly consolidated carbonate rock reservoirs, leading to equipment damage and environmental waste. This issue can be mitigated by injecting formation-strengthening chemicals, and the performance of these chemicals can be assessed in terms of their tensile strength and interfacial interaction with calcite, the main component of carbonate formations. This study aims to investigate the tensile deformation behaviour of polymer-calcite systems. Classical atomistic molecular dynamics (MD) simulations are utilised to model the interaction of polyacrylamide-based polymer additives, including pure polyacrylamide (PAM), hydrolysed polyacrylamide (HPAM), and sulfonated polyacrylamide (SPAM) with a calcite (1 0 4) structure. Uniaxial tensile simulations demonstrate that the interfacial strength of the polymer-calcite system is significantly stronger than the corresponding bulk polymer strength, resulting in strong polymer adhesion at the calcite surface during deformation. HPAM exhibits high bulk polymer and interfacial strength, presumably due to the presence of the acrylate monomer in ionised form, making it an excellent formation-strengthening agent.

Abstract Image

聚合物-方解石体系抗拉强度特性的原子分子动力学模拟
在固结不良的碳酸盐岩储层中可能会产生固体,导致设备损坏和环境浪费。这个问题可以通过注入地层强化化学物质来缓解,这些化学物质的性能可以通过它们的抗拉强度和与方解石(碳酸盐地层的主要成分)的界面相互作用来评估。本研究旨在探讨聚合物-方解石体系的拉伸变形行为。经典的原子分子动力学(MD)模拟用于模拟基于聚丙烯酰胺的聚合物添加剂的相互作用,包括纯聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM)和方解石(1 0 4)结构的磺化聚丙烯酰胺(SPAM)。单轴拉伸模拟表明,聚合物-方解石体系的界面强度明显高于相应的体聚合物强度,导致方解石在变形过程中表面有很强的聚合物粘附。HPAM表现出高体积聚合物和界面强度,可能是由于电离形式的丙烯酸酯单体的存在,使其成为一种优秀的地层强化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信