Xinxin Wang , Xiaodong Cai , Rong Hong , Haorui Liu , Wandong Zhao
{"title":"Investigation of rapid detonation initiation under injection mixing conditions with downstream low-energy ignition strategies","authors":"Xinxin Wang , Xiaodong Cai , Rong Hong , Haorui Liu , Wandong Zhao","doi":"10.1016/j.ast.2025.110178","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the deflagration-to-detonation transition (DDT) under injection mixing conditions using high-resolution numerical simulations and a downstream ignition strategy. We analyze the effects of inflow Mach number, fuel equivalence ratio (ER), ignition duration, and ignition location on mixing and detonation initiation. Results show that lower Mach numbers enhance transverse mixing, while higher Mach numbers facilitate faster detonation onset via stronger shear-induced energy deposition. Near-stoichiometric ER reduces initiation distance and boosts detonation velocity, whereas deviations impede flame propagation. Additionally, a new initiation mechanism emerges under low-energy ignition and low internal energy mixtures: a Mach stem forms during flame acceleration, leading to autoignition behind it. Reflected shocks further promote detonation by intensifying interactions with flame fronts. This mechanism demonstrates a pathway to rapid detonation using minimal ignition energy. Furthermore, appropriate ignition duration and location accelerate upstream flame propagation, with suboptimal placement risking poor mixing and detonation failure. These findings provide comprehensive insights into optimizing conditions for efficient detonation initiation under realistic supersonic combustion systems.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"162 ","pages":"Article 110178"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963825002494","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the deflagration-to-detonation transition (DDT) under injection mixing conditions using high-resolution numerical simulations and a downstream ignition strategy. We analyze the effects of inflow Mach number, fuel equivalence ratio (ER), ignition duration, and ignition location on mixing and detonation initiation. Results show that lower Mach numbers enhance transverse mixing, while higher Mach numbers facilitate faster detonation onset via stronger shear-induced energy deposition. Near-stoichiometric ER reduces initiation distance and boosts detonation velocity, whereas deviations impede flame propagation. Additionally, a new initiation mechanism emerges under low-energy ignition and low internal energy mixtures: a Mach stem forms during flame acceleration, leading to autoignition behind it. Reflected shocks further promote detonation by intensifying interactions with flame fronts. This mechanism demonstrates a pathway to rapid detonation using minimal ignition energy. Furthermore, appropriate ignition duration and location accelerate upstream flame propagation, with suboptimal placement risking poor mixing and detonation failure. These findings provide comprehensive insights into optimizing conditions for efficient detonation initiation under realistic supersonic combustion systems.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.