Background parenchymal uptake classification using deep transfer learning on digital mammograms

Q2 Health Professions
Xudong Liu , Christopher Scott , Imon Banerjee , Celine Vachon , Carrie Hruska
{"title":"Background parenchymal uptake classification using deep transfer learning on digital mammograms","authors":"Xudong Liu ,&nbsp;Christopher Scott ,&nbsp;Imon Banerjee ,&nbsp;Celine Vachon ,&nbsp;Carrie Hruska","doi":"10.1016/j.smhl.2025.100573","DOIUrl":null,"url":null,"abstract":"<div><div>Background parenchymal uptake (BPU) in fibroglandular tissue on a molecular breast image (MBI) has been shown to be a strong risk factor for breast cancer and complementary to mammographic density. However, MBI is generally performed on women with dense breasts and only available at institutions with nuclear medicine capabilities, limiting the utility of this measure in routine breast screening and risk assessment. Digital mammography is used for routine breast screening. Our goal was to evaluate whether BPU features could be identified from digital mammograms (DMs) using deep transfer learning. Specifically, we identified a cohort of about 2000 women from a breast screening center who had DM and MBI performed at the same time period and trained models on DMs to classify BPU categories. We consider two types of classification problems in this work: a five-category classification of BPU and two combined classes. We designed and implemented machine learning algorithms leveraging state-of-the-art pre-trained deep neural networks, evaluated these algorithms on the collected data based using metrics such as accuracy, F1-score, and AUROC, and provided visual explanations using saliency mapping and gradient-weighted class activation mapping (GradCAM). Our results show that, among the experimented models, WideResNet-50 demonstrates the best performance on a hold-out test set with 58% accuracy, 0.82 micro-average AUROC and 0.72 macro-average AUROC on the five-category classification, while ResNet-18 comes out on top with 77% accuracy, 0.86 AUROC and 0.77 F1-score on the binary categorization. We also found that incorporating age, body mass index (BMI) and menopausal status improved classification of BPU compared to DM alone.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100573"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Background parenchymal uptake (BPU) in fibroglandular tissue on a molecular breast image (MBI) has been shown to be a strong risk factor for breast cancer and complementary to mammographic density. However, MBI is generally performed on women with dense breasts and only available at institutions with nuclear medicine capabilities, limiting the utility of this measure in routine breast screening and risk assessment. Digital mammography is used for routine breast screening. Our goal was to evaluate whether BPU features could be identified from digital mammograms (DMs) using deep transfer learning. Specifically, we identified a cohort of about 2000 women from a breast screening center who had DM and MBI performed at the same time period and trained models on DMs to classify BPU categories. We consider two types of classification problems in this work: a five-category classification of BPU and two combined classes. We designed and implemented machine learning algorithms leveraging state-of-the-art pre-trained deep neural networks, evaluated these algorithms on the collected data based using metrics such as accuracy, F1-score, and AUROC, and provided visual explanations using saliency mapping and gradient-weighted class activation mapping (GradCAM). Our results show that, among the experimented models, WideResNet-50 demonstrates the best performance on a hold-out test set with 58% accuracy, 0.82 micro-average AUROC and 0.72 macro-average AUROC on the five-category classification, while ResNet-18 comes out on top with 77% accuracy, 0.86 AUROC and 0.77 F1-score on the binary categorization. We also found that incorporating age, body mass index (BMI) and menopausal status improved classification of BPU compared to DM alone.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信