{"title":"Exploring molecular interactions between methyl Myristate and 2-alcohols: Free volume theory perspective","authors":"Sanaz Gharehzadeh Shirazi, Samaneh Heydarian, Hassan Moghanian, Mohamad Naseh","doi":"10.1016/j.jct.2025.107485","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the thermophysical properties of binary mixtures consisting of methyl myristate (MM) and a homologous series of 2-alkanols (ranging from 2-propanol to 2-hexanol) over a temperature range of 293.15 to 323.15 K. Experimental measurements of liquid densities and viscosities reveal significant deviations from ideal behavior, characterized by positive excess molar volumes and negative viscosity deviations across all examined mixtures. The observed positive deviations in excess molar volume suggest weak intermolecular interactions between MM and the 2-alkanols. Furthermore, both an increase in the alkyl chain length of the 2-alkanols and temperature rise were found to reduce these molecular interactions, leading to more pronounced excess volumes. To better understand the viscosity behavior of both pure components and their mixtures, we applied free volume theory. This theoretical approach demonstrated excellent agreement with experimental data, with a maximum deviation of only 2.41 % observed in the MM/2-propanol system.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107485"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000394","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the thermophysical properties of binary mixtures consisting of methyl myristate (MM) and a homologous series of 2-alkanols (ranging from 2-propanol to 2-hexanol) over a temperature range of 293.15 to 323.15 K. Experimental measurements of liquid densities and viscosities reveal significant deviations from ideal behavior, characterized by positive excess molar volumes and negative viscosity deviations across all examined mixtures. The observed positive deviations in excess molar volume suggest weak intermolecular interactions between MM and the 2-alkanols. Furthermore, both an increase in the alkyl chain length of the 2-alkanols and temperature rise were found to reduce these molecular interactions, leading to more pronounced excess volumes. To better understand the viscosity behavior of both pure components and their mixtures, we applied free volume theory. This theoretical approach demonstrated excellent agreement with experimental data, with a maximum deviation of only 2.41 % observed in the MM/2-propanol system.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.