{"title":"Measurement and correlation solubility of 7-amino-6-nitrobenzodifuroxan in fifteen pure solvents from 288.15 to 333.15 K","authors":"Hai-Fang Wang","doi":"10.1016/j.jct.2025.107487","DOIUrl":null,"url":null,"abstract":"<div><div>7-Amino-6-nitrobenzodifuroxan (ANBDF) solubility was determined using a laser dynamic technique from 288.15 K to 333.15 K under 0.1 MPa in fifteen pure solvents, including methanol, ethanol, acetone, cyclohexanone, ethyl acetate, acetonitrile, dichloromethane, 1,2-dichloroethane, ethanoic acid, propanoic acid, toluene, o-xylene, N-Methylpyrrolidone (NMP), <em>N</em>,<em>N</em>-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO). ANBDF might become more soluble in fifteen pure solvents as the temperature rose. At 298.15 K, the following substances dissolve ANBDF in the following order: DMSO > NMP > DMF > cyclohexanone > acetone > acetonitrile > ethyl acetate > ethanoic acid >1,2-dichloroethane > o-xylene > propanoic acid > methanol > dichloromethane > toluene > ethanol. The KAT-LSER model was used to study the influence of the solvent, and it revealed that the acidity of the solvents' hydrogen bonds has a stronger impact on the solubility of ANBDF. The solubility of ANBDF was correlated using van't Hoff equation, modified Apelblat equation, Yaws equation and polynomial empirical equation. In addition, thermodynamic parameters such as the standard dissolution enthalpy, standard dissolution entropy, and standard Gibbs free energy were calculated based on the experimental solubility values. The dissolution process of ANBDF could be an enthalpy-driven, non-spontaneous and endothermic process in fifteen pure solvents. The measurement and fitting solubility of ANBDF have important guiding significance for the purification and crystallization of its preparation process.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107487"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000412","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
7-Amino-6-nitrobenzodifuroxan (ANBDF) solubility was determined using a laser dynamic technique from 288.15 K to 333.15 K under 0.1 MPa in fifteen pure solvents, including methanol, ethanol, acetone, cyclohexanone, ethyl acetate, acetonitrile, dichloromethane, 1,2-dichloroethane, ethanoic acid, propanoic acid, toluene, o-xylene, N-Methylpyrrolidone (NMP), N,N-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO). ANBDF might become more soluble in fifteen pure solvents as the temperature rose. At 298.15 K, the following substances dissolve ANBDF in the following order: DMSO > NMP > DMF > cyclohexanone > acetone > acetonitrile > ethyl acetate > ethanoic acid >1,2-dichloroethane > o-xylene > propanoic acid > methanol > dichloromethane > toluene > ethanol. The KAT-LSER model was used to study the influence of the solvent, and it revealed that the acidity of the solvents' hydrogen bonds has a stronger impact on the solubility of ANBDF. The solubility of ANBDF was correlated using van't Hoff equation, modified Apelblat equation, Yaws equation and polynomial empirical equation. In addition, thermodynamic parameters such as the standard dissolution enthalpy, standard dissolution entropy, and standard Gibbs free energy were calculated based on the experimental solubility values. The dissolution process of ANBDF could be an enthalpy-driven, non-spontaneous and endothermic process in fifteen pure solvents. The measurement and fitting solubility of ANBDF have important guiding significance for the purification and crystallization of its preparation process.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.