{"title":"Random expansions of trees with bounded height","authors":"Vera Koponen, Yasmin Tousinejad","doi":"10.1016/j.tcs.2025.115201","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a sequence <span><math><mi>T</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>n</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span> of trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> where, for some <span><math><mi>Δ</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> every <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has height at most Δ and as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> the minimal number of children of a nonleaf tends to infinity. We can view every tree as a (first-order) <em>τ</em>-structure where <em>τ</em> is a signature with one binary relation symbol. For a fixed (arbitrary) finite and relational signature <span><math><mi>σ</mi><mo>⊇</mo><mi>τ</mi></math></span> we consider the set <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of expansions of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to <em>σ</em> and a probability distribution <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which is determined by a (parametrized/lifted) Probabilistic Graphical Model (PGM) <span><math><mi>G</mi></math></span> which can use the information given by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>The kind of PGM that we consider uses formulas of a many-valued logic that we call <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> with truth values in the unit interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We also use <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> to express queries, or events, on <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. With this setup we prove that, under some assumptions on <strong>T</strong>, <span><math><mi>G</mi></math></span>, and a (possibly quite complex) formula <span><math><mi>φ</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> of <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> are vertices of the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> then the value of <span><math><mi>φ</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> will, with high probability, be almost the same as the value of <span><math><mi>ψ</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>ψ</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> is a “simple” formula the value of which can always be computed quickly (without reference to <em>n</em>), and <em>ψ</em> itself can be found by using only the information that defines <strong>T</strong>, <span><math><mi>G</mi></math></span> and <em>φ</em>. A corollary of this, subject to the same conditions, is a probabilistic convergence law for <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-formulas.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1040 ","pages":"Article 115201"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525001392","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a sequence of trees where, for some every has height at most Δ and as the minimal number of children of a nonleaf tends to infinity. We can view every tree as a (first-order) τ-structure where τ is a signature with one binary relation symbol. For a fixed (arbitrary) finite and relational signature we consider the set of expansions of to σ and a probability distribution on which is determined by a (parametrized/lifted) Probabilistic Graphical Model (PGM) which can use the information given by .
The kind of PGM that we consider uses formulas of a many-valued logic that we call with truth values in the unit interval . We also use to express queries, or events, on . With this setup we prove that, under some assumptions on T, , and a (possibly quite complex) formula of , as , if are vertices of the tree then the value of will, with high probability, be almost the same as the value of , where is a “simple” formula the value of which can always be computed quickly (without reference to n), and ψ itself can be found by using only the information that defines T, and φ. A corollary of this, subject to the same conditions, is a probabilistic convergence law for -formulas.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.