Random expansions of trees with bounded height

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Vera Koponen, Yasmin Tousinejad
{"title":"Random expansions of trees with bounded height","authors":"Vera Koponen,&nbsp;Yasmin Tousinejad","doi":"10.1016/j.tcs.2025.115201","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a sequence <span><math><mi>T</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>n</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></math></span> of trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> where, for some <span><math><mi>Δ</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> every <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has height at most Δ and as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> the minimal number of children of a nonleaf tends to infinity. We can view every tree as a (first-order) <em>τ</em>-structure where <em>τ</em> is a signature with one binary relation symbol. For a fixed (arbitrary) finite and relational signature <span><math><mi>σ</mi><mo>⊇</mo><mi>τ</mi></math></span> we consider the set <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of expansions of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to <em>σ</em> and a probability distribution <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which is determined by a (parametrized/lifted) Probabilistic Graphical Model (PGM) <span><math><mi>G</mi></math></span> which can use the information given by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>The kind of PGM that we consider uses formulas of a many-valued logic that we call <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> with truth values in the unit interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We also use <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> to express queries, or events, on <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. With this setup we prove that, under some assumptions on <strong>T</strong>, <span><math><mi>G</mi></math></span>, and a (possibly quite complex) formula <span><math><mi>φ</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> of <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, if <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> are vertices of the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> then the value of <span><math><mi>φ</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> will, with high probability, be almost the same as the value of <span><math><mi>ψ</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>ψ</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> is a “simple” formula the value of which can always be computed quickly (without reference to <em>n</em>), and <em>ψ</em> itself can be found by using only the information that defines <strong>T</strong>, <span><math><mi>G</mi></math></span> and <em>φ</em>. A corollary of this, subject to the same conditions, is a probabilistic convergence law for <span><math><mi>P</mi><mi>L</mi><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-formulas.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1040 ","pages":"Article 115201"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525001392","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a sequence T=(Tn:nN+) of trees Tn where, for some ΔN+ every Tn has height at most Δ and as n the minimal number of children of a nonleaf tends to infinity. We can view every tree as a (first-order) τ-structure where τ is a signature with one binary relation symbol. For a fixed (arbitrary) finite and relational signature στ we consider the set Wn of expansions of Tn to σ and a probability distribution Pn on Wn which is determined by a (parametrized/lifted) Probabilistic Graphical Model (PGM) G which can use the information given by Tn.
The kind of PGM that we consider uses formulas of a many-valued logic that we call PLA with truth values in the unit interval [0,1]. We also use PLA to express queries, or events, on Wn. With this setup we prove that, under some assumptions on T, G, and a (possibly quite complex) formula φ(x1,,xk) of PLA, as n, if a1,,ak are vertices of the tree Tn then the value of φ(a1,,ak) will, with high probability, be almost the same as the value of ψ(a1,,ak), where ψ(x1,,xk) is a “simple” formula the value of which can always be computed quickly (without reference to n), and ψ itself can be found by using only the information that defines T, G and φ. A corollary of this, subject to the same conditions, is a probabilistic convergence law for PLA-formulas.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信