{"title":"Josephson “flying qubit” revival: Flux-based control optimization","authors":"M.V. Bastrakova , D.S. Pashin , P.V. Pikunov , I.I. Soloviev , A.E. Schegolev , N.V. Klenov","doi":"10.1016/j.chaos.2025.116353","DOIUrl":null,"url":null,"abstract":"<div><div>A decade ago, Josephson “flying qubits” based on adiabatic superconducting logic cells showed promise as quantum data buses, but their development stalled due to the incompatibility of traditional qubit control methods with their design. We revisit this concept by exploring the control of the inductively shunted two-junction superconducting interferometer (adiabatic quantum flux parametron, AQFP) in the quantum regime using unipolar magnetic field pulses generated by adiabatic superconducting electronics. Our research demonstrates the feasibility of high fidelity quantum operations (fidelity more than 99.99%) in this system via Landau–Zener tunneling. To this end, a method is proposed for selecting the duration and shape of control pulses to eliminate unwanted leakage into high-lying states in AQFP-based systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116353"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003662","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A decade ago, Josephson “flying qubits” based on adiabatic superconducting logic cells showed promise as quantum data buses, but their development stalled due to the incompatibility of traditional qubit control methods with their design. We revisit this concept by exploring the control of the inductively shunted two-junction superconducting interferometer (adiabatic quantum flux parametron, AQFP) in the quantum regime using unipolar magnetic field pulses generated by adiabatic superconducting electronics. Our research demonstrates the feasibility of high fidelity quantum operations (fidelity more than 99.99%) in this system via Landau–Zener tunneling. To this end, a method is proposed for selecting the duration and shape of control pulses to eliminate unwanted leakage into high-lying states in AQFP-based systems.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.