Grey wolf optimization technique with U-shaped and capsule networks-A novel framework for glaucoma diagnosis

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-03-31 DOI:10.1016/j.mex.2025.103285
Govindharaj I , Ramesh T , Poongodai A , Senthilkumar K. P , Udayasankaran P , Ravichandran S
{"title":"Grey wolf optimization technique with U-shaped and capsule networks-A novel framework for glaucoma diagnosis","authors":"Govindharaj I ,&nbsp;Ramesh T ,&nbsp;Poongodai A ,&nbsp;Senthilkumar K. P ,&nbsp;Udayasankaran P ,&nbsp;Ravichandran S","doi":"10.1016/j.mex.2025.103285","DOIUrl":null,"url":null,"abstract":"<div><div>The worldwide prevalence of glaucoma makes it a major reason for blindness thus proper early diagnosis remains essential for preventing major vision deterioration. Current glaucoma screening methods that need expert handling prove to be time-intensive and complicated before yielding appropriate diagnosis and treatment. Our system addresses these difficulties through an automated glaucoma screening platform which combines advanced segmentation methods with classification approaches. A hybrid segmentation method combines Grey Wolf Optimization Algorithm with U-Shaped Networks to obtain precise extraction of the optic disc regions in retinal fundus images. Through GWOA the network achieves optimal segmentation by adopting wolf-inspired behaviors such as circular and jumping movements to identify diverse image textures. The glaucoma classification depends on CapsNet as a deep learning model that provides exceptional image detection to ensure precise diagnosis. The combination of our method delivers 96.01 % segmentation together with classification precision which outstrips traditional approaches while indicating strong capabilities for discovering glaucoma at early stages. This automated diagnosis system elevates clinical accuracy levels through an automated screening method that solves manual process limitations. The detection framework produces better accuracy to improve clinical results in a strong effort to minimize glaucoma-induced blindness worldwide and display its capabilities in real clinical environments.<ul><li><span>•</span><span><div>Hybrid GWOA-UNet++ for precise optic disc segmentation.</div></span></li><li><span>•</span><span><div>CapsNet-based classification for robust glaucoma detection.</div></span></li><li><span>•</span><span><div>Achieved 96.01 % accuracy, surpassing existing methods.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103285"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125001311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The worldwide prevalence of glaucoma makes it a major reason for blindness thus proper early diagnosis remains essential for preventing major vision deterioration. Current glaucoma screening methods that need expert handling prove to be time-intensive and complicated before yielding appropriate diagnosis and treatment. Our system addresses these difficulties through an automated glaucoma screening platform which combines advanced segmentation methods with classification approaches. A hybrid segmentation method combines Grey Wolf Optimization Algorithm with U-Shaped Networks to obtain precise extraction of the optic disc regions in retinal fundus images. Through GWOA the network achieves optimal segmentation by adopting wolf-inspired behaviors such as circular and jumping movements to identify diverse image textures. The glaucoma classification depends on CapsNet as a deep learning model that provides exceptional image detection to ensure precise diagnosis. The combination of our method delivers 96.01 % segmentation together with classification precision which outstrips traditional approaches while indicating strong capabilities for discovering glaucoma at early stages. This automated diagnosis system elevates clinical accuracy levels through an automated screening method that solves manual process limitations. The detection framework produces better accuracy to improve clinical results in a strong effort to minimize glaucoma-induced blindness worldwide and display its capabilities in real clinical environments.
  • Hybrid GWOA-UNet++ for precise optic disc segmentation.
  • CapsNet-based classification for robust glaucoma detection.
  • Achieved 96.01 % accuracy, surpassing existing methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信