D.J. Hamelin , M. Scicluna , I. Saadie , F. Mostefai , J.C. Grenier , C. Baron , E. Caron , J.G. Hussin
{"title":"Predicting pathogen evolution and immune evasion in the age of artificial intelligence","authors":"D.J. Hamelin , M. Scicluna , I. Saadie , F. Mostefai , J.C. Grenier , C. Baron , E. Caron , J.G. Hussin","doi":"10.1016/j.csbj.2025.03.044","DOIUrl":null,"url":null,"abstract":"<div><div>The genomic diversification of viral pathogens during viral epidemics and pandemics represents a major adaptive route for infectious agents to circumvent therapeutic and public health initiatives. Historically, strategies to address viral evolution have relied on responding to emerging variants after their detection, leading to delays in effective public health responses. Because of this, a long-standing yet challenging objective has been to forecast viral evolution by predicting potentially harmful viral mutations prior to their emergence. The promises of artificial intelligence (AI) coupled with the exponential growth of viral data collection infrastructures spurred by the COVID-19 pandemic, have resulted in a research ecosystem highly conducive to this objective. Due to the COVID-19 pandemic accelerating the development of pandemic mitigation and preparedness strategies, many of the methods discussed here were designed in the context of SARS-CoV-2 evolution. However, most of these pipelines were intentionally designed to be adaptable across RNA viruses, with several strategies already applied to multiple viral species. In this review, we explore recent breakthroughs that have facilitated the forecasting of viral evolution in the context of an ongoing pandemic, with particular emphasis on deep learning architectures, including the promising potential of language models (LM). The approaches discussed here employ strategies that leverage genomic, epidemiologic, immunologic and biological information.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 1370-1382"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025001138","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genomic diversification of viral pathogens during viral epidemics and pandemics represents a major adaptive route for infectious agents to circumvent therapeutic and public health initiatives. Historically, strategies to address viral evolution have relied on responding to emerging variants after their detection, leading to delays in effective public health responses. Because of this, a long-standing yet challenging objective has been to forecast viral evolution by predicting potentially harmful viral mutations prior to their emergence. The promises of artificial intelligence (AI) coupled with the exponential growth of viral data collection infrastructures spurred by the COVID-19 pandemic, have resulted in a research ecosystem highly conducive to this objective. Due to the COVID-19 pandemic accelerating the development of pandemic mitigation and preparedness strategies, many of the methods discussed here were designed in the context of SARS-CoV-2 evolution. However, most of these pipelines were intentionally designed to be adaptable across RNA viruses, with several strategies already applied to multiple viral species. In this review, we explore recent breakthroughs that have facilitated the forecasting of viral evolution in the context of an ongoing pandemic, with particular emphasis on deep learning architectures, including the promising potential of language models (LM). The approaches discussed here employ strategies that leverage genomic, epidemiologic, immunologic and biological information.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology