PIRO: A web-based search platform for pathology reports, leveraging large language models to generate discrete searchable insights

Q2 Medicine
Scott Robertson , Venkata Koppireddy , Jeremy Cumbo , Hooman Rashidi , Samer Albahra
{"title":"PIRO: A web-based search platform for pathology reports, leveraging large language models to generate discrete searchable insights","authors":"Scott Robertson ,&nbsp;Venkata Koppireddy ,&nbsp;Jeremy Cumbo ,&nbsp;Hooman Rashidi ,&nbsp;Samer Albahra","doi":"10.1016/j.jpi.2025.100436","DOIUrl":null,"url":null,"abstract":"<div><div>Pathologists rely on access to historical diagnostic case texts for research, education, and peer learning. However, many laboratory information systems (LIS), including Epic Beaker, lack optimized search tools tailored to pathology-specific text queries. To address this need, we developed PIRO (Pathology Information Retrieval Optimizer), a web-based platform enabling efficient text searches of diagnostic archives. Built using FastAPI, Angular, and Apache Solr, PIRO supports both basic and advanced search functionalities, faceted filtering, and data extraction, while ensuring compliance with institutional privacy protocols. PIRO's capabilities extend to case cohort building, search result export, and secure access control within the institutional network. In an 8-month study, we observed significantly higher PIRO adoption rates (67 %) among pathologists compared to Epic Beaker's SlicerDicer (9 %), underscoring PIRO's usability and relevance. Additionally, we implemented a large language model (LLM) to annotate reports with a “Malignancy Risk” label, enhancing search precision and enabling future expansion of automated annotations. Ongoing work focuses on integrating PIRO with our digital pathology platform, enabling direct access to digital slides from case results. PIRO's adaptable design makes it applicable across institutions, advancing search and retrieval efficiency in pathology archives and enhancing support for pathology research and education.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"17 ","pages":"Article 100436"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353925000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Pathologists rely on access to historical diagnostic case texts for research, education, and peer learning. However, many laboratory information systems (LIS), including Epic Beaker, lack optimized search tools tailored to pathology-specific text queries. To address this need, we developed PIRO (Pathology Information Retrieval Optimizer), a web-based platform enabling efficient text searches of diagnostic archives. Built using FastAPI, Angular, and Apache Solr, PIRO supports both basic and advanced search functionalities, faceted filtering, and data extraction, while ensuring compliance with institutional privacy protocols. PIRO's capabilities extend to case cohort building, search result export, and secure access control within the institutional network. In an 8-month study, we observed significantly higher PIRO adoption rates (67 %) among pathologists compared to Epic Beaker's SlicerDicer (9 %), underscoring PIRO's usability and relevance. Additionally, we implemented a large language model (LLM) to annotate reports with a “Malignancy Risk” label, enhancing search precision and enabling future expansion of automated annotations. Ongoing work focuses on integrating PIRO with our digital pathology platform, enabling direct access to digital slides from case results. PIRO's adaptable design makes it applicable across institutions, advancing search and retrieval efficiency in pathology archives and enhancing support for pathology research and education.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pathology Informatics
Journal of Pathology Informatics Medicine-Pathology and Forensic Medicine
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
18 weeks
期刊介绍: The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信