Evolution of surface and subsurface properties of Zr-4 alloy under the combined effects of laser heat treatment and laser gas nitriding: Microscopic morphology, chemical composition, and mechanical behavior
Puhong Xu , Yongfeng Qian , Hong An , Haolin Guo , Zhiyu Zhang , Minqiang Jiang , Hu Huang , Jiwang Yan
{"title":"Evolution of surface and subsurface properties of Zr-4 alloy under the combined effects of laser heat treatment and laser gas nitriding: Microscopic morphology, chemical composition, and mechanical behavior","authors":"Puhong Xu , Yongfeng Qian , Hong An , Haolin Guo , Zhiyu Zhang , Minqiang Jiang , Hu Huang , Jiwang Yan","doi":"10.1016/j.jmatprotec.2025.118833","DOIUrl":null,"url":null,"abstract":"<div><div>Zr-4 alloy, extensively employed as cladding in nuclear reactor fuel rods, stands as the foremost line of defense for reactor safety. Given its susceptibility to defects such as micro-pores during casting and its long-term exposure to extreme conditions during practical service processes, enhancing the surface and subsurface properties of Zr-4 alloy is essential. Herein, a nanosecond pulsed laser is used to irradiate the Zr-4 alloy in a nitrogen environment to investigate the evolution of its surface and subsurface properties under the combined effects of laser heat treatment and laser gas nitriding. The experimental results reveal a remarkable augmentation in surface hardness and scratch resistance of the Zr-4 alloy after laser irradiation. Notably, the hardness of the laser-irradiated surface obtained with a laser power of 23.0 W and a scanning speed of 150 mm/s reaches 19.10 GPa, which is more than 7 times higher than that of the untreated surface (2.37 GPa). These improvements are attributed to the synergistic effects of the introduction of hard ZrN phase, the reduction of subsurface porosity, and grain refinement. This study demonstrates a promising approach for significantly improving the mechanical properties of Zr-4 alloy, holding considerable practical significance for its applications in the nuclear energy industry and other relevant fields.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"339 ","pages":"Article 118833"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625001232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zr-4 alloy, extensively employed as cladding in nuclear reactor fuel rods, stands as the foremost line of defense for reactor safety. Given its susceptibility to defects such as micro-pores during casting and its long-term exposure to extreme conditions during practical service processes, enhancing the surface and subsurface properties of Zr-4 alloy is essential. Herein, a nanosecond pulsed laser is used to irradiate the Zr-4 alloy in a nitrogen environment to investigate the evolution of its surface and subsurface properties under the combined effects of laser heat treatment and laser gas nitriding. The experimental results reveal a remarkable augmentation in surface hardness and scratch resistance of the Zr-4 alloy after laser irradiation. Notably, the hardness of the laser-irradiated surface obtained with a laser power of 23.0 W and a scanning speed of 150 mm/s reaches 19.10 GPa, which is more than 7 times higher than that of the untreated surface (2.37 GPa). These improvements are attributed to the synergistic effects of the introduction of hard ZrN phase, the reduction of subsurface porosity, and grain refinement. This study demonstrates a promising approach for significantly improving the mechanical properties of Zr-4 alloy, holding considerable practical significance for its applications in the nuclear energy industry and other relevant fields.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.