{"title":"Eliciting prior information from clinical trials via calibrated Bayes factor","authors":"Roberto Macrì Demartino , Leonardo Egidi , Nicola Torelli , Ioannis Ntzoufras","doi":"10.1016/j.csda.2025.108180","DOIUrl":null,"url":null,"abstract":"<div><div>In the Bayesian framework power prior distributions are increasingly adopted in clinical trials and similar studies to incorporate external and past information, typically to inform the parameter associated with a treatment effect. Their use is particularly effective in scenarios with small sample sizes and where robust prior information is available. A crucial component of this methodology is represented by its weight parameter, which controls the volume of historical information incorporated into the current analysis. Although this parameter can be modeled as either fixed or random, eliciting its prior distribution via a full Bayesian approach remains challenging. In general, this parameter should be carefully selected to accurately reflect the available historical information without dominating the posterior inferential conclusions. A novel simulation-based calibrated Bayes factor procedure is proposed to elicit the prior distribution of the weight parameter, allowing it to be updated according to the strength of the evidence in the data. The goal is to facilitate the integration of historical data when there is agreement with current information and to limit it when discrepancies arise in terms, for instance, of prior-data conflicts. The performance of the proposed method is tested through simulation studies and applied to real data from clinical trials.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108180"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000568","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the Bayesian framework power prior distributions are increasingly adopted in clinical trials and similar studies to incorporate external and past information, typically to inform the parameter associated with a treatment effect. Their use is particularly effective in scenarios with small sample sizes and where robust prior information is available. A crucial component of this methodology is represented by its weight parameter, which controls the volume of historical information incorporated into the current analysis. Although this parameter can be modeled as either fixed or random, eliciting its prior distribution via a full Bayesian approach remains challenging. In general, this parameter should be carefully selected to accurately reflect the available historical information without dominating the posterior inferential conclusions. A novel simulation-based calibrated Bayes factor procedure is proposed to elicit the prior distribution of the weight parameter, allowing it to be updated according to the strength of the evidence in the data. The goal is to facilitate the integration of historical data when there is agreement with current information and to limit it when discrepancies arise in terms, for instance, of prior-data conflicts. The performance of the proposed method is tested through simulation studies and applied to real data from clinical trials.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]